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We establish the FKG correlation inequality for the Euclidean scalar 
Yukawa2 quantum field model and, when the Fermi mass is zero, for 
pseudoscalar Yukawag. To do so we approximate the quantum field model 
by a lattice spin system and show that the FKG inequality for this system 
follows from a positivity condition on the fundamental solution of the 
Euclidean Dirac equation with external field. We prove this positivity 
condition by applying the Vekua-Bers theory of generalized analytic 
functions. 

KEY W O R D S  : FKG correlation inequali ty ; Yukawa 2 model ; quantum field 
theory; generalized analytic functions ; Euclidean Dirac equation. 

1.  I N T R O D U C T I O N  

Correlation inequalities have played a significant role in both statistical 
mechanics and quantum field theory. Consider in particular the problem of 
taking the thermodynamic limit of the correlation functions, or, in the lan- 
guage of Euclidean field theory, the infinite-volume limit of the Schwinger 
functions. One expects expansion techniques to succeed for weakly coupled 
models, where by "weakly coupled" we mean high temperature or small 
coupling constant, or low activity or large external field. As evidence for this 
expectation see Ruelle, (1~ Gl immet  al., ~2~ or Spencer. (3) On the other hand, 
monotonicity arguments involving correlation inequalities are applicable 
regardless of the strength of the coupling. For example, for the P(q~)g quantum 
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field model, the existence of the infinite-volume limit follows from the use of 
Griffiths inequalities ~-6~ provided the polynomial P is even. Recently, 
Fr6hlich and Simon ~7~ have taken the infinite-volume limit for arbitrary 

(semibounded) P by using the F K G  inequalityJ 8's~ Actually, their construction 
also involves expansion techniques, since they begin with Spencer's large- 
external-field result, ~3~ and they then " turn  off" the external field by means of 
the F K G  inequality. 

From the point of view of classical statistical mechanics the main result 
of this paper is that the F K G  inequality holds for a certain two-dimensional 
lattice spin system with a rather complicated interaction. This theorem is of 
interest to constructive quantum field theory because, and this is one of our 
major results, the continuum limit of this lattice model is the Euclidean 
Yukawa2 (Y2) model in the Matthews-Salam-Seiler formulation. The F K G  
inequality carries over to this limit and so we may apply the method of Simon 
and Fr6hlich for constructing a (partial) infinite-volume theory for the strong- 
ly coupled Y2 model. (9~ The weakly coupled Y2 model has already been con- 
structed since the Glimm-Jaffe-Spencer cluster expansion has been carried 
out for small coupling constant ~1~ and for large external field. (12~ 

The Yukawa2 quantum field model describes the interaction of scalar or 
pseudoscalar bosons with spin-�89 fermions in two space-time dimensions. 
There have been very few correlation inequalities proven for this model. For 
pseudoscalar Y2 the first Griffiths inequality has been established by Mac- 
Dermot oa~ (see also Nicolai ~1~ and Rosen ~is~), but we are dubious that the 
more useful second Griffiths inequality holds (at least for scalar Y2). 

It is important to understand why the presence of fermions in the Y~ 
model poses difficulties in the search for correlation inequalities. In a purely. 
bosonic model such as P(r the theory with interaction in a finite A c E 2 
is specified by a probability measure on S'(R 2) of the form 

dv(r = const p(r d#(r (1.1) 

where d/x(r is the flee boson measure, i.e., the Gaussian measure in the field 
r with mean zero and covariance C = ( - A  + rnb2) -I,  where m v >  0 is the 
boson mass, and where p = e-U*, with U, a local function of r e.g., 

U.  = f . :P ( r  dx. By the lattice approximation of Guerra et al. (~ it is 

possible to approximate such a field theory model by a statistical mechanical 
ferromagnetic spin model on a lattice, as we now describe: Let L denote the 
rectangular lattice of points in A with spacing 3 > 0, i.e., L = { j ~ l j  a Z ~, 

j3 ~ A}. At each site j3 ~ L one introduces a spin variable qj c [R (roughly 
speaking, the average of(} in the square Aj with centerf i  and sides of length ~ ; 
see Section 4). One defines the lattice cutoff field in A by 

= 0 . 2 )  
J 
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and the lattice approximation to p by 

po = exp[-fA:P(4o(x)): dx] 

As far as expectations of functions of the qj are concerned, the corresponding 
approximate measure const p0 d/x reduces to a probability measure 

duo(q) = const p0(q) e x p ( -  �89 Aq)dg (1.3) 

on R ~, with n the number of sites in L, where (i) o~(q) is local in the sense that 
po(q) = I~j pj(qj), so that p0 does not couple spins at different sites; (ii) the 
Gaussian part of (1.3) is ferromagnetic in the sense that A u ~< 0 if i r j. 

One then establishes (5~ correlation inequalities for the statistical mechani- 
cal model with measure (1.3). These inequalities survive in the limit ~-+ 0 
because of the basic convergence result 

P0 "-~ P in L~(dtz) (1.4) 

for any p < oo. 
Unfortunately, when fermions are involved there simply is not a suitable 

measure like (1.1) on which to base a proof  of correlation inequalities (in 
spite of the efforts of many people). However, it was an important discovery 
of Seller (zG~ that, if the fermion fields are integrated out by a formal procedure 
of Matthews and Salam, then one is left with a well-defined measure in the 
boson field, of the form (1.1). This raises the possibility of proving correlation 
inequalities involving functions of the boson field alone. One pays a price, 
though, for the Matthews-Salam-Seiler formalism, namely, that the density 0 
is a complicated nonlocal function of the field q~ [see (1.9) below]. Thus the 
spin model that results from a lattice approximation has a rather peculiar 
nonlocal measure. Still, we are able to establish the F K G  inequality for such 
a complicated system because the FKG condition on ~ follows from a very 
simple sufficient condition [(1.5) below]. We should mention that there is an 
alternate approach to correlation inequalities for models involving fermions, 
due to Fr6hlich and Park (17~: instead of "integrating out"  the fermions, they 
"bosonize"  the fermions, i.e., they express bilinear quantities in the fermion 
field in terms of an auxiliary boson field. In this way they obtain first and 
second Griffiths inequalities for a regularized version of the Y2 model. 
Modulo the technical problem of removing the regularization, their inequali- 
ties lead to results on the existence of the infinite-volume limit that are very 
similar to ours. 

The condition (1.5) in the following version of the F K G  inequality on ~ 
has been used by Sax (18~ and Avron et al. ~19~ and demystifies (for us) the proof  
of the F K G  inequality: 
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T h e o r e m  1.1 ( F K G  Inequality).  Let dv = e ~ d"q be a probabi l i ty  
measure  on ~ with w ~ C 2 ( ~ ) .  Suppose that  

Then  

82w/Sq~ 8qs >1 O, i ~ j (1.5) 

for  all increasing functions f and g on E ~ (for which f ,  g, and fg are dv- 
integrable).  

Recall that  an increasing f u n c t i o n f  on E ~ is one for w h i c h f ( x )  ~< f ( y )  
ifx~ ~< y~, i = 1,..., n. 

Before proving this theorem we should commen t  further  on its back-  
ground. This result may  not  look quite like the familiar  F K G  theorem,  (2~ 
where the hypotheses  are stated in this way:  dv = p d~q is assumed to be a 
probabi l i ty  measure  on E~ whose density p satisfies 

p(p V q)p(p A q) >1 p(p)p(q) (1.7) 

where (p v q)~ = max(p~, qi) and (p /~ q)~ = min(p~, q~). But the hypotheses 
(1.5) and (1.7) are essentially equivalent  (see Appendix  A). We should also 
point  out that  the p r o o f  of  our theorem remains valid if d"q is replaced by an 
arbi t rary  product  measure  on E ~. It  follows that  one can easily recover f rom 
T heo rem 1.1 the F K G  inequality on a finite distributive lattice whose measure  
satisfies (1.7). (2~ Finally, we ment ion  that  Gl imm and Jaffe (23~ have given a 
similar p r o o f  of  a special case of  Theo rem 1.1. 

Proof. The p r o o f  is by induction on n. The  case n = 1 is trivial because 
the left side of  (1.6) can be writ ten as 

'ff [ f (p )  - f (q) ]  [g(p) - g(q)] dr(p) dr(q) 

which is nonnegat ive because the integrand is. Assume now that  the theorem 
is true on E ~- I  and consider the inequali ty on E". We write q = (q', qO, 
where q '  a E , - 1  and, by Fubini ' s  theorem,  we condit ion on q,; i.e., we write 

f fg dr= f dq~ p(q,~)f f(q', qn)g(q', q~)dvq,(q') 

where the probabi l i ty  measure  dvq, = p(q,O-z exp[w(q', q,)] dq' and p(q~) = 
f exp[w(q', q~)] dq'. The inductive hypothesis  clearly applies to the q '  integral 

so that  

fig dv >1 f dq, p(q,OF(q,)G(q,) (1.8) 
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where F(qn) = f f(q',  qn) dvq, and G(q~) = f g(q', q.) d~. . Since, as we show 

next, F and G are increasing, we deduce from (1.8) and the n = 1 result that 
(1.7) holds: 

f fg  dv>~ f dq~ p(q,~)F(q, 0 f dq~ p(q,~)G(q,O= f f d v  f g dv 

Now, becausefis  increasing, to show that F(q,) is increasing it suffices to 

show that ff(q~) - f f (q ' ,  qo) dvq, is increasing in qn for fixed q0- We compute 

that 

, f dq,~ - ~ (q'' q~)f(q ' qo) dv,~ - ~ (q', q~) dvq~ f(q', qo) dvq, 

(Strictly speaking, the factor aw[aq,~ may result in divergent integrals, but we 
can always first regularize by t runca t ingfand  g and the region of integration 
and then take limits.) Obviously (1.5) implies that (Ow/Oq~)(q', q=) is an in- 
creasing function o fq '  and so by the inductive hypothesis dff/dq,~ >>. O. Hence 
F and G are increasing. �9 

We now define the Y2 model in the Matthews-Salam-Seiler formula- 
tion. <16) The measure dr(C) on S ' (~  2) for the interacting theory in a finite 
volume A c [R 2 has the form (1.1), where 

p = o(K) = c det3(1 - ~K)exp(-2,2B) (1.9) 

The explanation of (1.9) is as follows, c is a positive constant chosen so that 

f p d/, = 1 ; K is an operator on the Hilbert space 

= ~,~, = {(fo,f~)l(p 2 + mf2)II*f~(p)~L2(~2)} 
= L2((p 2 + mi2) ~12 d2p) | C 2 (1.10) 

where m r > 0 is the Fermi mass (where no confusion may arise, we shall 
drop the subscripts b a n d f o n  m). The operator Kis defined, at least formally, 
by its integral kernel 

K(x, y) = S(x, Y)r (1.11) 

where r is the boson field, x ,  is the characteristic function of A, and S is the 
free Fermi two-point function: 

f + m  S(x, y) - (2;) 2 d2p ei~'<x-~'p{ + m2 ~ e  (1.12) 
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with 

P =  ifioPo+irilpl, rio = [~ 0], r l =  [0 _01] (1.13) 

I[;   a,arY  
011 p  udosca,  Y  

We shall set the coupling constant I = 1 throughout this paper. The sub- 
tracted determinant is defined by ~24~ 

det3(1 - K) = exp[r r  ln(1 - K) + K + K2/2] (1.15) 

and B is defined when rn I > 0 by 

B = I : T r ( K  2 + K'~K): (1.16) 

where K* is the adjoint of K on L2(~ 2) @ C 2 and : : denotes Wick ordering 
with respect to dr*. When m r = 0 the expression (1.16) suffers an infrared 
divergence and we must modify the definition (see Section 7). 

The above formalism has been justified by Seiler/I6~ who showed in 
particular that, for m~ > 0, O c LP(d~) for p < oo. In Section 2 we formulate 
and prove two "abst ract"  theorems (Theorems 2.1 and 2.2) which isolate the 
estimates needed to recover Seiler's L p result. These theorems contain nothing 
new for the expert on the Y2 model, but they enable us to carry out the 
approximations required in this paper. As a further application of Theorem 
2.2, we analyze the Y2 model with mf = 0 in Section 7. 

We now ask whether the Y~ measure dv in (1.1) satisfies (1.5). Of course 
S'(~ 2) is not R ~, but one should bear in mind that the theorem is to be applied 
to the approximating lattice spin system. We should obtain the correct 
intuition if we proceedforrnally in the best traditions of quantum field theory 
with functional derivatives 3/3~b(x) replacing partial derivatives ~/Oq~. By 
(1.1) and (1.9) 

dv : const exp[-�89 (--A + mb2)q~) + Tr K -  �89 K'K: 

+ Tr ln(1 - K)] ~--~ d(~(x) 
XE~R2 

-= const [exp W(r I ~  d(~(x) 

The inequality we desire is 

a2w/~q4x) ~ ( y )  >. o, x # y (1.17) 



The FKG Inequality for the Yukawa2 Quantum Field Theory 129 

Now, the mixed second partial of  the first term in W is just the corresponding 
off-diagonal element of  the " m a t r i x "  zX - m 2 ,  which is positive for x infini- 
tesimally close to y and zero otherwise. This heuristic statement is made 
r igorous by the lattice approximat ion of  Ref. 5. The next two terms in W do 
not contribute to (1.17), since T r K  is linear in r and : T r K * K : =  

8m 2 f :r dx is a local function o f r  Therefore (1.17) reduces to showing 

that  
a~ 

8r 8r  Wr ln(1 - K) > 0, x r y 

For  x, y ~ A we calculate using the definition (1.11) that 

8 8K 
8r Tr ln(1 - K) = - T r ( 1  - K) -~ 8 r  - - T r ( 1  - K)- ISS~  

and 

6 2 
Tr In(1 - K) = - T r ( 1  - K)-zSSx(1 - K ) - l S S y  

ar ar 

where By(z) = 8(z - y). In terms of  

S ' -  = (1 - K ) - I S  (1.I8) 

we conclude that 

62 
ar ar  Yr ln(1 - K) = - t r  S' (y ,  x )S ' (x ,  y)  

where tr denotes the trace on 2 • 2 matrices, the integration over the con- 
t inuous variables having been eliminated by the 8 functions. Thus (1.17) 
reduces to 

tr S ' (y ,  x )S ' (x ,  y)  <<. 0, x # y (1.19) 

F rom the definition (1.18), we see that  S '  is the fundamental  solution 
(vanishing at infinity) of  the external field problem 

[ F - l ( - f i  �9 ax + mr) - r  y)  = 8(x - y)  (1.20) 

As so often happens, the field-theoretic problem has (formally) reduced to the 
problem of  establishing an estimate (1.19) for a classical Green 's  function. 
To analyze S '  we recast the problem in complex nota t ion:  we set z = xo + ixz 
so that  

and we identify real two-component  spinors with complex functions 
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ul] _ + iu2. Then the homogeneous equation corresponding to (1.20) Ui 
L/2 

becomes 

O~u + B~ = 0 (1.21) 

where 

B(z) = f�89 - ml) scalar (1.22) 
[�89 - imr) pseudoscalar 

We are thus dealing with a perturbed Cauchy-Riemann equation. Such 
equations have been extensively studied by Vekua (25~ and Bers, ( ~  the solu- 
tions u of (1.21) being called generalized analytic functions. We review the 
relevant results of this theory in Section 3. The central result of the theory is 
that every generalized analytic function can be represented as a product of an 
analytic function with a bounded, continuous, nonvanishing function (see 
Lemma 3.4). This type of representation will enable us to prove (1.19) for 
m I /> 0 in the scalar case, but only for m r = 0 in the pseudoscalar case. It 
should be pointed out that Vekua (25~ places certain regularity conditions on B 
both locally and at infinity. To make contact with Vekua's theory we must 
accordingly regularize the B in (1.22). 

This completes our heuristic description of the ideas involved in proving 
the main theorem of this paper: 

Theorem 1.2. Consider the scalar Y2 model with m I >/ 0 or the 
pseudoscalar model with rn I = 0 with interaction in the rectangle A. Let dv be 
the normalized measure defined by (1.1) and (1.9). Let J be the class of 
increasing functions of the boson field, 

or = {F(r  ..... ~ (hr ) ) l r />  0; 

F: Nr _+ R continuous and increasing; 

hj c L2(A), hj >/O} 

Then for all F, G c J 

f FGdv  fFd f Gdv (1.23) 

provided F, G, and FG are dv-integrable. 
It takes an embarrassing amount of technical work for us to convert the 

above heuristics to a rigorous proof. Perhaps an outline at this poinkwould 
help. Our first step is to place the lattice cutoff (1.2) on the boson field. We 
define the lattice cutoff density to be [compare with (1.9)] 

p~ = cop(K~) = co det3(1 - K~)exp(-B6) (1.24) 

where 
Ko(x, y)  = S(x ,  y)q56(y)xA(y ) (1.25) 
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Bo = �89 2 + KotK~):, and the constant c~ is chosen so that f p~ d~ = 1. 
Section 4 is devoted to the proof that 

p~ -+ p in LP(dlz) (1.26) 

for any p < o% at least for a subsequence ~ --~ 0. As far as expectations of 
functions of the qj are concerned, the measure po d/~ reduces to a measure of 
the form (1.3) on R ~ except that the non-Gaussian factor p0 is nonlocal. Thus, 
as in the case ofP(r we have cut down the continuum of random variables 
(r to a finite number of lattice variables {qj}~=l so that we can appeal 

to Theorem 1.1. 
There are still problems in applying Theorem 1.1. In the first place, we 

do not know that In po is in C2(Rn); specifically, for scalar Y2, we do not 
know whether the operator (1 - K~) -1, which arises in the computation of 
,9 2 In p~/Oq~ Oqj, exists in any reasonable sense. Second, when m I > 0, the 
field B(z) in (1.22) does not go to 0 as ]z[-+ 0% as is required in Vekua's 
theory. We overcome both of these problems by imposing a second major 
cutoff, namely a spatial cutoff on the Fermi mass: we replace mi in (1.12) and 
(1.22) by mixD,~(x), where DR is the disk centered at 0 with radius R > 0. In 
the case of the Fermi two-point function (1.12) we set 

SR = (1 + SomIxDR)-ISo 

where So is defined by (1.12) with m = 0. We then define K~ = SRr and 

Po.R = c6.R det3(1 - ~KR)exp{-�89 2 + K 'K] :}  (1.27) 

where co.R is a normalizing constant and where the additional cutoff 
~R e Co~ is introduced for technical reasons. If  we assume that A ~ DR;~ 
and that ~R = 1 on DRI2, then (1.27) is actually (formally) independent of ~R. 
We are then able to verify condition (1.5) for p6.R (Corollary 6.6): 

02 in p~.R/Oq~ Oqj >t O, i # j (1.28) 

Taking into account the known ferromagnetic nature of the free boson 
measure, we may apply Theorem 1.1 to obtain 

f fgpo.R+ >~ f fpo,~d~ f gpo.~d~ (1.29) 

for f and g increasing functions of the qj. 
We next wish to take the limit R -+ oo. It is possible to let R -+ m in 

(1.28) (see Theorem 5.1), but the result is inadequate for our purposes since 
we obtain the inequality b 2 In po/~q, Oqj >~ 0 for i # j only when (1 - K6)- z 
exists as a bounded operator on ~ .  We are accordingly obliged to take R --+ ov 
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in (1.29), i.e., in the conclusion of Theorem 1.1 rather than in its hypothesis. 
This involves the proof  that (see Section 5) 

p~.R-+ p~ in LV(dtO (1.30) 

for a n y p  < oo, at least for a subsequence R~ -+ oo. The inequality (1.29) now 
extends to the noncutoff case much as in the P(r case (Theorem V.10 of 
Ref. 5): 

Proof of Theorem 1.2. We consider the case of scalar Y2 with m r > 0. 
The cases of  scalar Y2 with m r = 0 and pseudoscalar Y2 with m I = 0 are 
examined in Sections 7 and 8, respectively. It  suffices to consider bounded F 
and G since we can truncate general F a n d  G and recover (1.23) by limits. Let 

q~0(h) = f +o(x)h(x) dx = ~ f~j h(x) dx qj 

Then F6 -- F(~o(hl) ..... (~o(hr)) -+ F in each LffdF) as 8 ~ 0. Hence by (1.26) 
and (1.29) it suffices to show that 

But F~ and Go are increasing functions of the qj since each q~0(hi) is. Therefore 
(1.31) follows from (1.29). �9 

We wish to comment  on the relation of our lattice approximation to that 
of MacDermot5 TM As can be seen from (1.25), we impose a lattice cutoff on 
the boson field but leave the "Fermi field" untouched, i.e., we retain the Fermi 
two-point function S(x, y) of (1.12). MacDermot ' s  lattice spin system differs 
from ours in that he replaces S(x, y) by its lattice analog as well. But such an 
approximation would obviously ruin the PDE approach we have taken. 
MacDermot  apparently believed (p. 7 of  Ref. 13) that an approximation of 
our type was not possible, but he did not have any compelling reason to 
overcome the technical obstacles. His main purpose was to prove the first 
Griffiths inequality. Actually, it is possible to prove the first Griffiths 
inequality without resorting to any kind of lattice approximation at 

Although we find the results of this paper an encouraging step in the 
search for correlation inequalities for models involving fermions, there remain 
a number of  unanswered questions. As we have already emphasized, our 
results apply to pseudoscalar Ys only in the case m I = 0. However, the 
calculation of some special cases with m s > 0 (see Section 8) as well as an 
analysis of  pseudoscalar Y~ lead us to believe that the F K G  inequality may 
hold when rn I > 0. Also, one naturally wonders how much of our PDE 
approach can be extended to higher dimensions. Certainly generalized analytic 
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function theory is peculiar to two dimensions, but we have some evidence 
that the key inequality (1.19) 

tr S'(x, y)S'(x, y) <~ O, x r y 

holds in higher dimensions (see Section 8). The truth or falsity of this inequal- 
ity is purely a question about first-order elliptic PDEs that we wish to bring 
to the attention of workers in that field. 

2. L p E S T I M A T E S  IN T H E  Y U K A W A 2  M O D E L  

The starting point for a rigorous analysis of the Y2 model is the expres- 
sion dv = const p d/~ for the measure "after  the fermions have been integrated 
out"  [see definitions (1.9)-(1.16)]. Admittedly in the definition 

the counterterm 

B(K) = I : T r ( K  2 + K'K): (2.1) 

is infinite and the right side of (2.1) is only formal, but one can give a well- 
defined meaning to B(K) by defining it as the L2(d/~) limit of a suitably 
regularized version of (2.1); see Ref. 16 or Ref. t0, w We shall always 
interpret formal objects in such a way in the following analysis. 

Seller's main result (16~ for p states that 

peLP(d#) if p < ~ (2.3) 

This result has been generalized in a number of ways, e.g., to include the 
factor arising from a product of Fermi fields, (z6~ to include an arbitrary finite 
boson mass renormalization, (27'28~ to give the correct volume depen- 
dence, (2~,a~ and to cover the case of Dirichlet boundary conditions. (1~ But 
for the present purposes we wish to formulate an abstract version of Seiler's 
theorem that isolates the bounds on K that are sufficient to guarantee (2.3). 
This will enable us to replace the K of (1.11) with K's involving a lattice 
cutoff on the boson field and a mass cutoff in the Fermi two point function 
(1.12). 

Given a boson covariance C, a (bounded, real) positive operator on 
L2(~2), let Hb be the (real) Hilbert space completion of L2(~ 2) in the inner 
product (f, Cg)L2. Let r be the Gaussian random field with covariance C 
and mean 0, realized on a probability space (Q, d/~) (see, e.g., Ref. 22). Let 
be the Fermi Hilbert space as defined in (1.10). Let ((~ denote the class of 

:Tr KtK:-  (22)4 f p2 dp f ,  + m2 :r dx (2.2) 
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compact operators A on ~ with IIAI[v p - Tr(A*A) p/2 < m and let ~ .~  
denote the class of gp-valued functions A(r with 

[ f  ]~/q 
IIAII~.~ - dt~IlA(r < oo (2.4) 

We take K(r to be an integral operator on #f  of the form 

iKf)~(x) = (SxACY)~(x) - ~ fAdy S~(x, Y)r (2.5) 

where S~e(x, y) is a real, measurable function of x and y for a,/3 = 0, 1. 
Let {r j -- 1, 2,..., be a sequence of Gaussian fields on (Q, d/z) 

[thought of as approximations to r For convenience we shall assume that 
i f /  ~<j 

f r162 f r162 = f r162 Ci(x, y) 

and that as operators on L2(R 2) 

Define the "cutoff"  object 

and the " ta i ls"  

aKj=K-Kj, 

(2.6a) 

Kj = SXACj (2.7a) 

3Bj = :Tr(K + K*) 3Kj: (2.7b) 

Let D be a self-adjoint operator in Yf with bounded inverse D-1. [In practice, 
D = (--A + rni2)l/2.] Define (formally) 

= I:Tr(K+K - K ' K ) :  = f w(x, y):r162 dx dy W(K) (2.8) 

Then we have the following theorem (where the letters c and d denote 
various positive constants independent of the indices i and j ;  each c does not 
necessarily represent the same constant). 

T h e o r e m  2.1. Assume that for some �9 > 0 the following conditions are 
satisfied: 

(i) [ID-2~K[12,2 + [/D~KI]4.4 + [IBIIL= < oo. 
(ii) [ID-~gjll2.~ + IID~SKj[Ia.4 § liON, IlL= < cexp(--cJa) . 

(iii) f dt~ Tr(Kj + Kj*) 2 ~< cj. 
(iv) [[ WILL= = ~ llwll.o| < ~.  
(v) w(x, y) defines a positive-definite quadratic form on Co ~ x Co ~. 

C~ ~< Cj ~< C (2.6b) 
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Then p(K) + L~(dlx) for any p < Go. Moreover,  if the estimates in (i)-(iv) hold 
uniformly in some parameter,  then ii PIlL ~ is bounded uniformly. 

Flemork. We pause to explain how the hypotheses ensure that the various 
objects that occur are well-defined. By complex interpolation <2a~ 

IIKII3 ~< IID~K[t~/a[ID-2r ja (2.9) 

and so by (i), K e  qf3,a; hence K ~  Wa a.e. and deta(1 - AK) is a well-defined 
function on (Q, d/x) (Ref. 24, p. 1106). 

Of  course W(K) and B(K) are to be interpreted as limits in L2(dlx). The 
equality in (iv) is standard: 

= f w(x, y)w(x', y')[C(x, x')C(y, y') + C(x, y')C(y, x')] II wIl~ 2 

= 211wlI  | 

I f  we let //1 be the Hilbert space completion of Co ~ with norm I[f[[-1 = 

lI C-112fllL2, then 

(f, Wovg)L2 - / f ( x ) w ( x ,  y)g(y) dx dy = ( f  CWopg)H1 

Estimate (iv) then says that the integral operator CWov on //1 is Hilber t-  
Schmidt, for 

llCWopll s = Ilwllk| < oo 

The proof  below involves operators of  the form 

T(A) = A~(1 - AK) -~ det3(1 - ,XK) 

on the antisymmetric product space A ~Y~. We do not know whether R(A) = 
( 1  - AK) -~ is well-defined as an element of  2~(Yf) a.e. in ~. However, there 
is a cancellation between poles of  R(A) and zeros of  det3(1 - ,~K); more 
precisely, by Ref. 28, Prop. 5, for n >I 0 

KF--~ A~(1 -- K) -~ det3(1 - K) (2.10) 

is a continuous map from ~8 to ~ (  A ~Yf). But K ~ c~3 a.e., so we can define 
T(A) a.e. in q~ by continuity in ~ even at values h - t  + r Since the "opera-  
t o r "  R will always eccur in such a combination, we shall manipulate with K 
and R as though they were well-defined, bounded operators for all 4 and ,~. 
For  notational simplicity we now set h = 1. 

Proof of Theorem 2.1. We present the bare bones of  the proof, referring 
the reader to Ref. 10 for some missing details. The basic idea is to obtain an 
expansion for p(K) in which the j th  term depends (essentially) on Kj rather 
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than K. A related proof may be found in McBryan ~29~ and the basic method 
goes back to a paper of Glimm and Jaffe. ~31~ 

Obviously, 

fo l d ~ p(K) - p(K1) = dsl ~ p(K1) (2.11) 

where 

/ 71 ( s l )  = (1 - s 3 / q  + s l / ~  

We compute that (see Ref. 10, w 

d 
ds--~ 0(/~1) = -[Tr(/~IA1) + Bz]p(/~l) 

where 

R1 = (1 -/71) -1, A~ - - /~12  3K1, B1 = :Tr[(/~l  +/~1 t) ~K1]: 

Thus from (2.11) 

f2 p = p(K1) - dsl [Tr(/~aA1) + B,]p(/s (2.12) 

The term 0(/s on the right of (2.12) is the first-order term in our expansion. 
To obtain the second-order terms we iterate the procedure (2.11): we replace 
/~1 and 1#1 in (2.12) by 

- G ( s 0  = (1 - s3K1 + s~G, kds3 = [1 - K d s 3 ]  - 1  

by interpolating via 

ff2z(sl, s2) = (1 - sl)K1 + (sl -- s2)K2 + s2K, 0 <~ s2 <~ sl 

~ = ( 1  - ~)-~ 

(A note on notation: /~j will be a convex combination o f / (1 , / (2  .... , Kj, 
whereas/~j will be a convex combination of KI ..... Kj and K.) For example, 

f d Tr(/~2A ~)p(/~2) Tr(/~d~)p(/~) = Tr(/~2d~)p(/~2) + ds2 ~-~2 

The computation of the s2 derivative involves a certain amount of algebra 
(see Ref. 10, w as well as the introduction of some additional structure: let 
T,(.) = n! Tr^-~e(-). Then 

d Tr(-R2A1)p(/~2) = [-T2(A 2/~2.A1 A As) + T~(R2A~E2) 
ds~ 

- -  T l ( R 2 A 1 ) B 2 ] p ( ~ 2 2 )  (2.13) 
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where 

Aj = /~j2 SKi (2.14a) 

Ej = (1 + /~j) 3Kj (2.14b) 

Bj = :Tr(/~j + /~/) 3Kj: (2.14c) 

The virtues of formula (2.13) are that (a) (1 - /~2)-1 appears everywhere 
as in (2.10), so that we can obtain the pole-zero cancellation; and (b) (2.13) 
can be iterated easily. For example, the s-derivative of the term 
T~(A~/~+~A~ A ... A A~) (/~,+~) is 

[--T~+a(A~+I/~+IA~ A ... A A~+~) + Z Tn(A'~R~+*A~ A ... A AjE,+~ A 
i = 1  

... A & )  - T . ( A  "_~ .+ ,A~  A ... A A ~ ) B . + ~ ] p ( R . + ~ )  

For details see Ref. 10. 
The final expansion has the form 

m=l 

where at the ruth order we get a sum ~ p<~) of at most m ! terms each of the 
f o r m  

i j 
O'NSm_l...Sg,2<--Sl <l 

(2.16) 

where Rm is an s-dependent, convex combination of K1 ..... Kin; Rm = 
(1 - Rm)-l; Gj has the form A, ]-[k E,~ with Aj, Ej, Bj defined in (2.14); and 

0 ~< r ~< m -  1 (2.17) 

Now if p~  is that p~ with the largest L p norm, we have from (2.15) that 

![PlILP ~< Z m! ';Ip~)~L~ (2.18) 
m 

To estimate lp~ ~] we appeal to Lemma A.2 of Ref. 10 to obtain 

lOmB[ ~< r! [[ AU~m]]. IIa~ A ... A a~]l~ I - [  IBr lp(~?~)l 
h: 

The cancellation of poles against zeros is provided by the estimate [recall 
the definition (1.9) of p] 

1I A r~lJ ]deta(1 - Rm)[ ~< exp[r/2 + Tr(Rm + Rm*)2/4] (2.20) 
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As pointed out by McBryan (Ref. 27, Lemma 33) this estimate is an elemen- 
tary generalization of Carleman's inequality32~) Now 

B(K) = �88 + K*)~: + �89 K'K):  

= �88 + K*) 2 - �88 d~Tr(K + K*) 2 + W(K) 

It follows from (2.20) that 

[] A rl~m[[ [P(/~m)[ ~ exp[r/2 + f d~ Tr(Rm + Rm*)2/4 - W(Km) 1 

(2.21a) 

Now, to estimate j" d~ Tr(R= + Rm*) 2, we recall that Rm is an s-depen- 
dent, convex combination of K, .... , KIn: 

We have 

Rm= ~AjKj,  Aj~0 ,  ~ A , =  1 
j=l ] = 1  

f d I* Tr(Km + Kin*) 2 = 
j , j ' = l  

j , j '  = l 

Ajlj, f Tr(Kj + Kj*)(Kj, + K~,)dt~ 

a,A,. f d~x f d~y v(x, y) ~ ~,(x)~,.(y) & 

where v is the configuration kernel ofTr(K + K*) 2. It follows from (2.6a) and 
hypothesis (iii) that 

f d/z Tr(Km + Rm*) 2 = hjhj, f d/* Tr(Kmin{j.j,~ + K*in{j,y~)2 
j d ' = l  

~< ~ ajaj,cmin{j,j'} 
j , j ' = l  

<~ cm 

Thus, by (2.19), (2.21a), and (2.17) 

II0me[l~, ~< [exp(cm)l 1--~ B~ 1--[ IIGJ]] 1 exp[- W(Rm)] L, 

~< [exp(cm)l 1--I B~kl--I llajII1 L~, llexp[-W(Rm)lllL~, 

(2.21b) 



The FKG Inequality for the Yukawa2 Quantum Field Theory 139 

by the Schwarz inequality. We estimate each Gj by 

IIG;II, = IA,]--[ E~ 1 < I1A, II~I--[ llf~II 

There are exactly m - 1 of the A~, B~, and E~ occurring in (2.21b), so 
that by the HSlder inequality with q = 2p(m - 1) 

n 
the latter product occurring over ik e Ik, where {/1,/2,/a} is a partition of 
{1, 2,..., m -  1}. 

We estimate each IIAj[]I factor by HSlder's inequality and (2.9); i.e., 
from (2.14a) 

I1A, I]I ,< ll&I[a21ISK~[13 

<<. [ID~LII~,3tID- 2"L[If3IID'aKjIIf31ID-2~aK,[I~ z3 

By (i), D-2"SKj  = D - 2 " K  - K - 2 " K j  is in T2.2 uniformly i n j  and hence so is 
D-2 'Rj .  In this way we deduce from hypotheses (i) and (ii) that 

[{ IIA,Ill I1L~ < c e x p ( - c J  a) 

But ll/,ll 1 is cubic in r so that by hypercontractivity (Ref. 22, w we actually 
have 

II I]A,fll IlL ~ <~ c(q - 1) 3/2 e x p ( - c j  a) 

where the constants are independent o f j  and q. We estimate the Ej factors in 
(2.22) by similar reasoning from 

IIE,]] = [[(1 + g , )  8Kyll <~ IISK, H~ + [IR, If41ISK/I~ 

The desired bound on Bj follows from 

IlB, ll~= < IISB, I[~= (2.23) 

and hypothesis (ii). The bound (2.23) is almost obvious: the only difference 
between 8Bj and Bj [see definitions (2.7b) and (2.14c)] is that the K in aBj is 
replaced by Rj in Bj, where/~j is a convex combination of K~ .... , Kj, K. If one 
writes out both sides of (2.23), then (2.23) follows by appropriate use of (2.6). 

The upshot is that (2.22) is bounded by [with q = 2p(m - 1)] 

m - 1  r a - 1  

1-~ c(q - I) a/2 e x p ( - c j  a) <~ cmm3m121- ~ exp ( - - c j  a) 
. i = 1  ]=1 

<<. cram 3m/2 exp(-- cm 1 + a) 
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The point is that the decay factors exp( -c j  a) accumulate to give an overall 
convergence factor exp( -  cm 1 + a) that dominates m m. Returning to (2.21), we 
conclude that 

I[pmBIIL~ <<. cmi~247 (2.24) 

By conditioning (Ref. 32, w 2) and (2.6b) we have 

[[exp[- W(/s ~< []exp[-- W(K)]I]L=, 

Since CWov is a positive HS operator on H~, explicit integration (see, e.g., 
Ref. 16, Lemma 3.3) gives 

Ilexp[-m(K)]llz~, ~< exp[2p]lmll~ ] < oe 

Combining (2.18) and (2.24), we get 

IIPI[L" <~ ~ m! e mx~ < oo 
111 

Clearly this bound will be uniform in any parameters if each of the input 
bounds is. �9 

In the usual spatially cutoff Y2 model we take 

C = (--A + mb2) -1, m0 > 0 (2.25a) 

D = (-A + mr2) 1/z (2.25b) 

S(x ,  y )  =- ( - p  + m l ) - l ( x ,  y )  (2.25c) 

and 

Cj(x) = h~j * r (2.25d) 

~(k)  = (2rr)-2x~(k), with X~ the characteristic function of the set 

r = ~ f m? - p'(p + k) (2.26a) 

where 
[k] ~< K and with •j = e j. Then 

1 f e~k(x- u) 
Cj(x, Y) - (27r) 2 Jlk[z~, k 2 + mb 2dk  

and (2.6a) and (2.6b) are immediate. The hypotheses (i)-(vi) of Theorem 2.1 
may be verified by direct computation (see Seiler~Z6~). An important feature of 
these computations is the explicit momentum space cancellations in expres- 
sions involving Tr K 2, Tr K ' K ,  and Tr K*K. Since we shall make frequent 
use of these objects (or variations of them) we record here (formal) momen- 
tum space integrals for their kernels: Tr K z has the form 

T r K  2 

where 
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Tr K*K and Tr K*K have a similar form with 

2 f  1 
~K*K(k) dp ~ D(p)D(p + k) 

and 

(2.26b) 

2 f  1 ~KtK(k) = ~ ~ dp (2.26c) 

For example, in (2.8) the kernel w(x, y) = wo(x - y)xA(x)xa(y), where 

~,o(k) = ~ [0@)  -2 - D@ + k ) - l D @ )  -1] @ 

Hypothesis (v) then follows from the inequality 

~o(k) i> 0 

which in turn follows from the elementary inequality 

D(p + k)-ID(p) -~ <. �89 + k) -2 + D(p) -2] 

In addition, we wish to establish L p bounds in a case where the operator 
S of (2.5) is not diagonal in momentum space (see Section 5). To this end we 
follow Seller and Simon (28'a~ (see also McBryan (27'29) and Cooper and 
Rosen (1~ in estimating the " low-momentum" and "high-momentum" parts 
of K separately, For K = Sxar with S given by (2.25c) we write K = L + H, 
where L = S~XAr with 

S~ Y) = (2~)2 f I,,~o ( - g  + ml) -le~(x-~) dp 

and a > 0 a constant to be determined. It is not hard to see that (Ref. 28, 
Lemma 2.5) there is an operator T linear in r such that 

]]LII~ < ]IT/]= with T~T2.2 (2.27a) 

(Explicitly, T = const D-2XAC}.) This estimate allows us to replace K by H 
at certain points in the estimation of p [see (2.36) below]. The key idea is that 
if we replace K*K by H*H in the definition (2.8) of W we improve the posi- 
tivity property of w. Explicitly, if 

WH = �89 - H ' H ) :  - ~ WH(X, y):O(X)r dx dy 
JA xA 

(2.27b) 

then the kernel wn(x, y) = wH(x - y) has Fourier transform [see (2.26)] 

~H(k) = - ~  [D(p) -2 -- Oo(p + k)D(p + k)-ZD(p)-~l dp 

(2.28) 
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where Oo(p) is the characteristic function of the set {p[ lP] > ~}. By the same 
reasoning that led to (2.26), one obtains (28> 

~H(K) >1 (1/&r 2) ln(1 + c~2/ml z) (2.29) 

which can be made arbitrarily large by a suitable choice of cr. Thus the 
Gaussian e-WH, rather than being merely integrable, can be exploited to 
dominate other Gaussian factors. These remarks motivate the following 
perturbation theorem, which may be regarded as an abstraction of results of 
McBryan (27~ and Seiler and Simon. (zS,a~ 

T h e o r e m  2.2. Let K and K' = K + V be operators of the form (2.5) 
and define 

p(K', K) = deta(1 - hg') e x p [ -  h2B(K ', K)] (2.30a) 

where 

B(K', K) = �89 2 + K'K]: (2.30b) 

As in (2.7), define the tails 8Kj and 0 K / a n d  define 

8Bj(K', K) = :Tr(K' 8/s + K + 3Kj): (2.30c) 

Suppose that 

(a) K satisfies the hypotheses (i) and (iii) of Theorem 2.1. 
(b) For any M > 0, K can be written as a sum of operators linear in r 

K = L + H, such tha tL  satisfies (2.27a) for some T, the kernel W~ in (2.27b) 
defines a quadratic form on Co ~176 x Co ~176 bounded below by M, and 

I]XaWHXa]]H,~Ho < oo (2.31) 

(c) The tails 8 K / a n d  3Bj satisfy the decay bounds (ii) of Theorem 2.1. 
(d) With the E > 0 specified by Theorem 2.1, 

llD= Vll=,= + IIvD= II=,2 < oo (2.32) 

Then, i fp  < oo, p(K', K) ~ L~(dlz), uniformly in parameters if the hypotheses 
hold uniformly. 

Proof. We apply the same expansion procedure to p(K', K) as in Theo- 
rem 2.1. The proof  is identical up to (2.19). Moreover, there is no change in 
the estimation of the Bj and Gj factors in (2.19) since by (a) and (d), K'  = 
K + V satisfies 

IID-= /'II=,2 + [IO g'll .  < oo (2.33) 

obviously, and 

11B(g', K)IIL= < oo (2.34) 
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(2.34) follows f rom (2.32) since B(K) ~ L 2 by (a) and 

B(K', K) - B(K) = I : T r [ ( K ' )  2 - K2]: 

=�89 + K): 

Tr V(K' + K) - { j dtz Tr V(K' + K) �89 

But by the H61der inequali ty 

[Tr VK I = ]Tr VDZCD-2~K[ <~ IIVD2C]]z]ID-2~K[12 (2.35) 

so that  Tr  VK~L~(dt,) for  any p < co, and similarly for  Tr  VK' by (2.33). 
I t  thus remains to bound  the last factor  in (2.19), namely  I1 A ~/~m' [11P(/s [, 

where /s is a convex combina t ion  of  KI',..., Kin' and /~m' = (1 -- /~ ,)-1. 
(For  nota t ional  convenience we shall drop  the carets because in the end the 
occurrence of  convex combinat ions  is handled as in T h e o r e m  2.1.) The bound  
is based on this general izat ion of  (2.20): 

[I A ~R[[ ]deta(1 - K) I ~< exp[cr + cHL[Iz + �89 T r ( K  2 + H ' H ) ]  

(2.36) 

where K = L + H. As noted  in Ref. 10, w (2.36) is a simple consequence 
of  L e m m a  2.3 of  Seiler and Simon. (28~ 

We define H '  by K '  = K + H '  (and Hm' by Kin' = Lm + Hm'), so that  

V = K ' -  K =  H ' -  H (2.37) 

Applying  (2.36), we obtain 

il A  Rm'll I p(Km')l 
t ~ ! t ~< exp{cr + cllLm~l + �89 Tr[(Km') 2 + (Hm ) Hm ] - B(Km, Kin)} 

= exp{cr + cI1LII  + �89 - Km~:Kra]: 

f r , t + �89 dff Tr[(Km') 2 + (Hm) Hm ]} (2.38) 

I f  we substitute Hm' = Hm + Vm, the first trace in (2.38) can be wri t ten as 

�89 - K+Km): + �89 + Vm*Hm + Vm*Vm): 

- Wnm + Ql.m (2.39) 

where WH is defined in (2.27). I f  we substitute Kin' = Km + Vm and Hm' = 
Km + Vm - Lm into the last t e rm in (2.38), we get 

Tr[(Km') 2 + (Hm')*Hm'] -- Tr(Km 2 + K,~*Km) 

= Tr[Kmgm + VmKm + gm 2 + Km*(Vra -- Lm) 

+ (Vm -- Lm)Km* + (Vm -- Lm)*(Vm -- Lm)] 

=- 2Q2 
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We thus rewrite (2.38) as 

H A rRm'[[ [p(Km')I ~< exp[cr + f dt z Q 2 + � 8 9  dt x (Kin2+ Kin*Kin) 

-k c]]Lm[[1 q- Ql,m - VtZH~] 

N o w f  d~ Q2 < oo uniformly in m by the same reasoning as in (2.35); terms 

involving Lm are no problem since L s ~1.5 by (2.27a). The term 

f dlx (Kin 2 + Kin*Kin) <. cm by assumption (a). Hence 

[[ 1] A~Rrn'Hp(Km')[]c , <- [exp(cr)][[exp(ctlLm]]~ + Ql,m - 

(2.40) 
By (2.27a) 

llLmlll /ITml[  1( -1 + 811Tm/]  ) (2.41a) 

for any 3 > 0. Now by the assumptions on T 

llTmII22 = f t(x, Y)Om(X)(~m(Y) dx ely 

where t defines a positive-definite operator Top on L 2 with CTo v trace class. 
We write 

[ITmll22 = f t(x, y):(~m(X)~m(y): dx dy + tr(CmTop) (2.41b) 

Since tr(CmTop) ~< tr(CTop) < Go we conclude from (2.40), (2.41), and con- 
ditioning (32~ that 

I] ]] A rRm'IIp(Km')IIL; <<" exp(cr + c3-1)lIexp(c31[Tl]22 + Q1 - W~)IILp 

From its definition (2.39) and by reasoning as in (2.35), Q1 c L2(dl~). For 
M sufficiently large, it follows from Theorem 3.2 of Ref. 30 that 
e x p ( Q ~ -  W~)EL 2p. We then choose ~ > 0 sufficiently small so that 
exp(c3[[T[122) ~L  2p (see, e.g., Theorem 3.1 of Ref. 30). The proof  of the 
theorem is completed just as in the case of Theorem 2.1. �9 

We conclude this section with a continuity result for p(K) as a function of 
K. First we quote this useful result of Seiler and Simon (Ref. 33, Lemma 3.5): 

k e m m a  2.3. Let (Q, d/~) be a probability measure space. Suppose 
f .  a L  p with sup~l]/dLp < oo. If/~-+fpointwise, t h e n f ~ L  p a n d f , - + f i n  L q 
for any q < p. 

We then prove: 



The FKG Inequality for the Yukawa2 Quantum Field Theory 145 

Lemrna 2.4. Let K and Kn, n = 1, 2,..., be operators of  the form (2.5). 
Assume that for any p < ~ :  

(i) Ilp(Kn)qk. < ~ uniformly in n. 
(ii) IIK, - K]]3.3 --> 0. 

(iii) ItB(K~) - B(K)IIL2 --> 0. 

Then for any p < ~ ,  p(K) ~ L ~ and for a subsequence (K~), p(K~) -+ 
p(K) in L ~. 

Remark. An analogous result holds for p(K', K) of (2.30). 

Proof. By (ii) and (iii) there is a subsequence {K~} such that 

K, ,  --+ K in ~3 and B(Kn) --+ B(K) a.e. (w.r.t. r 

Using (2.10), we deduce that p(Kn~) -+ p(K) a.e. The conclusion of the lemma 
then follows from (i) and Lemma 2.3. �9 

3. G E N E R A L I Z E D  A N A L Y T I C  F U N C T I O N S  

Let So be the massless Fermi propagator,  i.e., 

1 f p eip.(~_ y) So(x,y) = (-~)2 dp p~ 

and let h(x) be a real-valued, bounded, measurable function. In this section S '  
denotes the operator 

S '  = (1 - Soh)-:So (3.1a) 

on the "massless"  Sobolev space d(f0 [recall the definition (1.10) of yfm]. 
What  we prove about S '  will be applied in Section 5 to the case 

h(x) = r ) - mXD,(X ) (3.1b) 

where the lattice cutoff boson field r is a simple function (see Section 4) and 
DR is the disk centered at 0 with radius R > 0. Here mXD~ is the spatially cutoff 
Fermi mass. This cutoff will be removed in Section 5, but it seems essential for 
the partial differential equations approach of the present section. 

Our main results are: 

T h e o r e m  3.1. Sob is a ~r operator on W0 and (1 - Sob)-: exists as a 
bounded operator on #fro. 

T h e o r e m  3.2. The restriction of S '  to smooth functions with compact 
support  is an integral operator whose kernel S'(x, y) is locally integrable on 
•4 and can be chosen to be continuous in x on ~2\(y} and continuous in y on 
~\{x}. 
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Theorem 3.3. tr S'(x,  y )S ' (y ,  x) < 0 for x r y. 
Our first step toward proving these theorems is to recast everything in 

complex notation. For example, if we set z = Xo + ix1, it is not hard to see 
that 

sg~ + is~~ = - i / ~ z  

S~ + iS~l(x) = - l f i r z  
SO 

for v ~ Co~(R2), where v = Vo + iv1 is identified with the vector (Vo, vl). Now 
for a given two-component function g 6 ~o ,  the f u n c t i o n f  = (1 - Soh)-ig 
solves the integral equation 

f -  Sohf = g (3.2) 

if it exists, so the basic integral equation we must study is 

f + P f  = g (3.3) 

where the (antilinear) operator P is defined by 

(Pf)(z) = i f  d2 ~ ~ h(~)f(~) 

[If the components of  f and g are complex, then Eq. (3.2) splits into real and 
imaginary parts, so there are no difficulties with our complexification pro- 
cedure.] Since 1/~z is a fundamental solution for the Cauchy-Riemann 
operator ~ = �89 + i ~/~x~) [and in matrix notation this would be the 
statement that So(x) is a fundamental solution for the operator -/30 ~/~Xo - 
/31 ~/~xl], the differential equation associated to (3.3) is, at least formally, 

~ f  + ihf = O:g 

Such generalizations of  the Cauchy-Riemann equations are treated exten- 
sively in Refs. 25 and 26. 

Our second step is to draw on the theory developed in Ref. 25. The 
homogeneous differential equation of interest to us is 

~ f  + B f  = 0 (3.4) 

where B is a bounded, measurable function with compact support. The 
solutions of  such an equation are called generalized analytic functions and 
they are shown by Vekua and Bers to have many of the properties of analytic 
functions. I t  should be emphasized here that the conditions placed on the 
variable coefficient are ours. The results of  their theory are proven for a much 
larger space of variable coefficients. 
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The first lemma we wish to state is central to the theory of generalized 
analytic functions. We give only a formal proof  because it clearly illustrates 
the idea behind the technically complicated theory of Vekua and Bers. The 
ingredients are an imitation of the elementary method of solving a linear 
ordinary differential equation and the knowledge that entire functions are 
exactly those functions annihilated by the Cauchy-Riemann operator in the 
sense of distributions. 

Lamina 3.4. L e t f b e  a locally integrable function such that (3.4) holds 
in the sense of distributions. Then 

f =  qbe ~ 

where �9 is an entire function and w is a bounded, continuous function. 

Formal ProoL Let 

where 

f f ( o / f ( o ,  f ( o  # o 
5(0 = L1, f (O = o 

An elementary convolution estimate shows that ~o is H61der-continuous. 
Clearly, o~ is analytic outside the support of B and decays like z-1, so the 
boundedness of  oJ follows. 

Multiplying the differential equation by e -~ and using the fact 0~oJ = 
-B~', we have O~(fe -~~ = O, s o f e  -~ must be an entire function. This com- 
pletes the "proof . "  

Romork. The proof  is only formal because the elementary rules 

~ e  -~176 = - e  -~ ~o~, ~ ( f e  -~) = f O r e  -~ + e -~ ~ f  

have to be verified. Since ~ is not absolutely continuous, these rules are not 
obvious, but Vekua proves them. (See the proof  of the Basic Lemma on p. 144 
of Ref. 25 and the theorems mentioned therein.) 

Following Vekua, we introduce a function space that plays a central role 
in the theory. For v real andp  t> 1 we define L~.v as the space of func t ionsf  
such that 

IlfIIp.v - I s  ] f ( z ) f  d2z] ~p + [s ]z[-~P' f (z-~) f  d2z] ~'v < ~176 

Note that B lies in every such space and that Lv.~ c Lfoo. These spaces were 
introduced because Vekua wished to isolate the local regularity condition and 
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the decay condition at infinity that must be imposed on the variable coeffi- 
cients of such equations as 

8sf  + A f  + B f =  g 

in order to obtain a reasonable existence theory for solutions. He assumes 
that the coefficients are in L~,2, P > 2. The Lp,~ spaces are also appropriate 
for the integral operator P in our study of (3.3), as the following lemma makes 
clear. (In the next two lemmas B replaces ih in our definition of P.) 

I . e m m a  3.5. P is a compact operator on the Banach space Lq.0 for 
arbitrary q > 2. Moreover,  for 0 < a < 1 and f~Lq,o ,  P f  is HSlder- 
continuous with exponent a and decays like z-1 at infinity. 

This result follows from Theorem 1.25 of Ref. 25 together with the fact 
that B c Lp.2 for arbitrary p > 2. The latter property of  P f  is an obvious 
consequence of the compactness of supp B; also, P f  is actually analytic 
outside supp B. 

L e m m a  3.6. For q > 2 and g~Lq.o there exists a unique f~Lq.o  
satisfying Eq. (3.3). 

Proof. Our reasoning is similar to that given on p. 156 of Ref. 25. By the 
Fredholm alternative, it suffices to show that the homogeneous equation 
f + P f  = 0 has only the zero solution in Lq,o. By Lemma 3.5, f i s  HSlder- 
continuous and decays at infinity like z-1. Clearly, f also satisfies (3.4) in the 
sense of distributions. By Lemma 3.4, we know t h a t f  = OeG where (b is an 
entire function and co is a bounded, continuous function. Hence �9 = 0. 

Our third step is to prove the first theorem, and in doing so we will 
alternate freely between complex notation and real vector notation. 

Proof of Theorem 3.1. In order to see that Soh is a ~G operator on W0, 
note that 

(Soh)* = D-I(Soh)tD 

where D = IP[ in momentum space. Thus 

(Soh)*Soh = D-  lhSo+DSoh = D-  lhD-  lh 

Since h is a bounded function with compact support, it is clear that (with 

X 5 ~ X1)  

( 
Tr[(Soh)*Soh] 2 = 2 1  d2x~ h(x~) D-~(x~ - x~_~) 

d ~=1 r i=l 

4 

a( SUpp h 4) i = 1 ~ = i 
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A s  

D-Z(x) = (1/2zr)2f d2p e~X.,[pj-1 

it is easy to see by rotation invariance and scaling that 

D- l (x )  = const/lx] 

so the above integral must be finite. 
Having shown that Soh is compact on ~o ,  we may now apply the Fred- 

holm alternative: in order to show that 1 - Soh is invertible, it suffices to 
show that 1 - Soh has dense range. To this end let v be a vector whose 
components are real-valued Co ~ functions. Clearly it is enough to find a 
u ~ Wo such that 

( 1  - S o h ) u  = v 

and we may impose the additional requirement that the components of u be 
real-valued. Thus in complex notation this equation reads 

u + P u = v  

where u = (Uo, ul) and v = (vo, vz) are identified with Uo + iuz and Vo + ivl, 
respectively. By Lemma 3.6 there exists a unique such u in Lq.o for arbitrary 
q > 2. We need only to show that u (as a vector) lies in Y#o. Since v (as a vec- 
tor) certainly lies in ~o ,  it will be sufficient to show that Sohu~ Wo. 

Since h has compact support, hu ~ L2(R 2) @ L2(R2) ,  so  hu lies in this 
space also. Hence 

dZP ]P[ ISohu(p)l ~ = d~P tPl-3IPNu(p)I ~ 

= dZP IP[-llhu(p)l ~ 

f, A f,. A <~ d~P Ihu(p)t z + d2P [P]-lthu(P)]2 
p[>l I~1 

< oO 

(The second integral is finite because [p]- 1 has an integrable singularity and 
hu is smooth.) [ ]  

Our next step is to examine the properties of S'(x, y). Assuming the 
existence of this kernel, we proceed formally down to Eq. (3.6a). First note 
that 

y) -- f d2~ So(x, ~)h(~)S'(~, y) = So(x, y) S'(x, 

If  we set 

S'(x, y) = [Re Xz(z, t) - R e  Xl(z, t)] (3.5) 
Im Xdz, t) - I r a  Xl(z, t) 
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where  z = xo + ix~, t = Yo + iyl, it is easy to check tha t  

1 
fl[rl(Z , t) "~ i f d2~xh(~) XI(~ ' t ) -  " /7(z-  {) 

and  

i F  -- i  x (z, t) + ; j  2 t) - 
7/'(Z t) 

We  wish to examine  arb i t ra ry ,  real,  l inear  combina t ions  X = c lY l  + c2X2 
of  X1, )(2. Clear ly  

C 
X(z,  t) + i f  d2 ~ zh(;)____ X(~, t) - 7r(z - t) (3.6a) 

where  c = c~ - ic2. W h a t  we will do  logical ly is establ ish existence and 
uniqueness  of  X(z, t) in a cer ta in  sense and  then show tha t  the matr ix  in (3.5) 
is indeed the kerne l  o f  S '  = (1 - Soh)-aSo. Theorems  3.2 and  3.3 will fol low 
f rom the p roper t i e s  o f  X(z,  t). 

Let  t be fixed as we examine  Eq. (3.6a). Set 

W ( z ,  t )  = ,~c-~(z - t ) X ( z ,  t )  

Then  the equa t ion  we wish to solve becomes  

1 
f B(~) W(~, t) = W(z, t) + ~r (z - t) d2~ (z - ~)(~ - t) 1 

where  

B(~) = ih(~)g(~ - t ) / c ( ~ -  ~) 

Clearly,  the equa t ion  can be rewri t ten  as 

W(z, t) + l f d2~ ~ W(~, t) + i f  

(3.6b) 

Since the cons tan t  funct ion 1 lies in Lq,0, it follows f rom a modif ica t ion  o f  
L e m m a  3.6 3 tha t  there  is a unique  solut ion o f  (3.6b) in Lq.0. This  solut ion W 
also satisfies the differential  equa t ion  

~ W ( z ,  t) + B(z)W(z,  t) = 0 

a The proof of Lemma 3.6 is not significantly altered. The perturbation of Eq. (3.3) is 
just a one-dimensional operator on Lq,0, so the operator in Eq. (3.6b) is still compact. 
When one considers the corresponding homogeneous equation, the entire function that 
arises is still bounded and vanishes at z = t instead of vanishing at infinity. 
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and so by Lemma 3.4, 

W(z, t) = C~(z, t)e ~ , ~  

where q~(., t) is entire and oJ(., t) is bounded and continuous. It follows from 
Eq. (3.6b) and Lemma 3.5 that W(., t) is bounded, so by Liouville's theorem 
�9 (z, t) depends only on t. If  we absorb this function of t into the exponential, 
we have co(t, t) = 0, since W(t, t) = 1. We have proven the following: 

k e m m a  3.7. Equation (3.6a) has a unique solution X(z, t) with the 
property that (z - t )X(z ,  t) lies in Lq.o. This solution has the representation 

c e~(~,t ~ (3.7) X ( z ,  t )  = ~ ( z  - t )  

where oJ(., t) is a bounded, continuous function and o~(t, t) = 0. 
The argument we have just given is very similar to the reasoning involved 

in the proof of Theorem 3.13 in Ref. 25. 
Let )(1 and )(2 be the solutions for e = 1 and e = - i ,  respectively. 

Following Vekua, we refer to this pair of functions as the system of  funda- 
mental generalized analytic functions for the equation 

a ~ f +  ihf = 0 (3.8) 

with pole at t. This pair of functions has an elementary property that will be 
very important to us: 

Lemma 3.8. Im Xl(z, t)X2(z, t) < O. 

Proof. Let cl, c2 be real numbers and X(z,  t) be the solution for 
e = e~ - ie2. Then, inspecting (3.5), we see that, by uniqueness, 

X = c~X1 + c2X2 

It follows from (3.7) that clX1 + c2X2 does not vanish anywhere unless 
el = e2 = 0. Thus X1, X2 are pointwise, linearly independent over the real 
numbers. Since Im X1X2 is just the pointwise cross product of )(1, X2 con- 
sidered as real vectors, it follows that Im -gzX2 does not vanish anywhere. 
As this real quantity is continuous for z # t, it suffices to show that it is 
negative somewhere. 

We have the representations 

1 
Xl(z, t) Tr(z - t~) e~ (3.9a) 

- i  e%(~,t ) (3.9b) 
X~(z ,  t )  - ~ ( z  - t )  
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s o  

1 
Im Xl(z, t)X2(z, t) = 7r21 z _ t[ 2 Re exp[wl(z, t) + c%(z, t)] 

Since col(t, t) = oJ2(t, t) = 0, it follows that limz~t Im -~1X2 = -oo .  �9 

So far we do not know how regular Xl(z, t) and X2(z, t) are with respect 
to t. Vekua resolves this question for the equation 

O;f + A f  + B f =  0 (3.10) 

by considering the adjoint equation 

a; f  - A f  - B f  = 0 (3.10') 

Let XI', X2' be the system of fundamental generalized analytic functions for 
the adjoint equation (3.10'). Then, using the (generalized) Cauchy integral 
formula, Vekua shows that (see Ref. 25, pp. 172-177) 

Xl(z, t) = - Re X~' (t, z) - i Re X2' (t, z) 
(3.11) 

X2(z, t) = - I m  Xl'(t, z) - i Im  X2'(t, z) 

In particular, X~(z, t) is continuous in t on C\{z}. 
Now notice that in our case A = 0, B = ih with h real. Hence (3.10) and 

(3.10') are identical and the relations (3.11) become the symmetries 

Xz(z, t) = - R e  Xz(t, z) - i Re X2(t, z) 
(3.12) 

X2(z, t) = - I r a  Xl(t, z) - i Im X2(t, z) 

We are now ready to prove Theorem 3.2; we do it by showing that the 
matrix 

Re X2(z, t) 
~(x, y) ~ I m  X2(z, t) 

is the kernel of S' of (3.1). 

- R e  Xl(z, t )]  
- I m  Xl(z, t ) ]  ' 

Z -= X o --}- i X 1 ,  t = Yo + iyl 

Proof of Theorem 3.2. Let v be a vector whose components are real- 
valued Co ~ functions. It suffices to show that Soy e ~o and 

f S(x, y)v(y) d2y (3.13) S' v(x) 

In complex notation the rhs reads 

- (  d2t Xl(z, t ) I m  v(t) + ( d2t X2(z, t) Re v(t) 
J J 
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which we will denote by u(z). It follows from the integral equation (3.6a) and 

the definition of )(1, )(2 that 

u(z) + d2~ u~) = - d2 t v(t) (3.14) 
- -  z - - t  

This is the basic integral equation (3.3), where 

g(z) = -  dZ t v(t) 
Z - - t  

Since v has compact support, g is certainly in Lq.0, so (3.14) has a unique 
solution in Lq.0, and it is clear that u is that solution. In vector notation (3.14) 
reads [see Eq. (3.1)]: 

u - Sohu = Soy 

The proof that Soy and Sohu are in the space Yf0 is identical to the argument 
in the proof of Theorem 3.1. Thus u c 34f o and so 

u -- (1 - Soh)-lSoV 

which is exactly Eq. (3.13). [ ]  

Our strategy for proving Theorem 3.2 has given us a hold on the kernel 
of  S '  and we are now able to prove the last theorem. 

Proof of Theorem 3.3. 

tr S'(x, y)S'(y,  x) = Re X2(z, t) Re X2(t, z) - Re X~(z, t) Im X2(t, z) 

- Im X2(z, t) Re X~(t, z) + I m  X~(z, t) I m  X~(t, z) 

It folIows from Eqs. (3.12) that 

tr S'(x, y)S'(y,  x) = - I r a  Xl(Z, t)X2(z, t) + Im X~(z, t)X2(z, t) 

= 2 I m  X~(z ,  t ) X ~ ( z ,  t )  

We conclude from Lemma 3.8 that tr S'(x, y)S'(y,  x) < O. []  

4. LATTICE A P P R O X I M A T I O N  FOR Y2. 

Throughout this section we adopt the convention m s = mb = m. 
We wish to prove the convergence of  the boson lattice approximation for 

the Yukawa2 model, where the approximation is introduced in the usual way 
(Ref. 5, w 3 > 0 is the distance between lattice points; with each lattice 
point n3 E (3Z) 2 we associate the random variable q, -= r where 

with 

F~(k) 2 = rn 2 + 5-2(4 - 2 cos k03 - 2 cos k16) (4.1) 
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and T0 the square T~ = [-~-/3, ~r/'3] 2. I f  x ~ N2 and n3 is the lattice point 
closest to x (with a suitable convention if x lies midway between lattice 
points), we write [x] = n. The lattice cutoff boson field is then defined to be 

Co(x) -- qExl (4.2a) 

The associated covariance 

1 F 

- 3 + = 

can be identified (5~ with (--A~ + m2) -1, where A~ is the finite-difference 
Laplacian on (3Z) 2. 

We impose no lattice cutoff on the Fermi propagator,  i.e., 

Ko(x, y) = S(x, Y)r 

and the cutoff density is [see (1,9)] 

p~ = p(K6) = deta(1 - Ko)e-B~ 

where B~ = �89 + K6*K6):. Our main result is: 

T h e o r e m  4.1. For any p < ~ ,  p6, --+ p in LP(dI~) for some sequence 
{3,} converging to 0. 

Remark. MacDermot  (la) has established a lattice approximation differ- 
ing from ours in that S is also replaced by a finite-difference Green's function 
( - f l ' e6s  + m)-~, where 3 r = 23. In our case it is essential that 3 r = 0, so 
that we cannot use MacDermot ' s  approximation. We believe that the tech- 
niques of  this section permit a lattice approximation like MacDermot ' s  with 
31 > 0 and with no connection assumed between 31 and & 

By the strategy outlined in Section 2 (see Lemma 2.4), Theorem 4.1 
follows from the following three lemmas. 

L e m m a  4.2. For any p < 0% po ~ L~(d/x) with bounds uniform in 5. 

L e m m a  4.3 .  Ko -+ K in W3.3 as 3 -~  0. 

L e m m a  4.4 .  Bo -+ B in L2(dl~) as 3 --~ 0. 
Since we shall apply Theorem 2.1 to the major task of proving Lemma 

4.2, most of  the effort in this section is directed toward verifying the hy- 
potheses of  Theorem 2. I for a convenient ultraviolet cutoff. Let 

32 
q(k) = -~ ~ #~"~qn, k E To 

so that 

and 

q. = (1/2,r)fr ~ e-*k"~e~(k) dk (4.3) 

f ~--~q(k') d/~ = 3(k - k')/z6(k )-2, k, k' ~ To (4.4) 
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We define our ultraviolet cutoff by modifying the integral 

r - qp~] = (1/2~r)(e-~g~xl~(k) dk 
~ T  6 

in the following way: set 

r = (1/2~r) ~ e - ~k.Ex~Oq(k) e - z~(k)/2~ dk (4.5a) 
' i T6  

&}j(x) = r - r (4.5b) 

where K = eL The corresponding covariance operator is 

1 
C~,j(x, y) ~ J q~0.~(x)~0.j(y)+ = ~-~J2.~ e~a([xJ-cUl'lx~ dk 

(4.5c) 

Notice that C0,j satisfies the monotonicity relation (2.6b) but not the relation 
(2.6a). This deficiency entails only a minor modification of the proof of 
Theorem 2.1 and so we shall continue to appeal to Theorem 2.1 as if (2.6a) 
held. But why have we introduced the j cutoff as in (4.5a) instead of as a 
sharp cutoff (i.e., ]k] ~< ~) for which (2.6a) obviously holds ? The reason is 
that we do not want the ultraviolet cutoff to interfere with the known small- 
distance bound on Co(x, y); see part (c) of the following lemma, which lists 
useful properties of Ca j :  

L e m m a  4.5. (a) If  i ~< j, then C0.~ ~< Ca,j as operators on L 2. 
(b) There is a constant c independent of 3 and j such that 

]Co.j(x, y)[ ~< c min(j, log a-z) (4.6) 

(c) There is a constant c independent of ~ and j such that 

[Co(x,y)] + ICo.j(x,y)l <~ clog(2 + t x -  yl -~) (4.7) 

Proof. (a) is obvious. (b) follows from the bound (Ref. 5, Lemma IV.2) 

(=/2)l~o(k) >i t~(k) = (k 2 + m2) ~f2, k ~ To (4.8) 

For by (4.8) (c denotes various positive constants) 

]Co,j[ <. c fa 2 I~(k)-2e -~(k>/~ dk 

= 2 = c ~  | t z - l e  -~"/~ dt~ 
r  

i2 = 2=c e - ~ x  __dx = O ( l o g  K) = O ( j )  
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Alternatively, we have 

]C~.s I <~ c f  tz(k) -2 dk = O(log 3 -1) 
~ T  d 

and this yields (4.6). 
For part (c) we follow the proof of Lemma IX.8 of Ref. 32, where it is 

shown that 

]C~(x,y)l <~ clog(2 + r -1) (4.9) 

where r = 3 max([xo] - [Yo], [xz] - [Yd). The proof involves a contour- 
shifting argument which is unaltered by the presence of the extra factor 
exp[--/~(k)/K] since, for fixed k0, ~6(k) is analytic in kz in a strip about the 
real axis and is periodic in kl with period 2Tr/& Thus we obtain the bound 
(4.9) for C6.j uniformly i n j  and & This implies (4.7) if r ~ 0; if r = 0, then 

Ix - y l ~< ~/26 and (4.7) follows from (4.6). �9 

We define the tails as in (2.7): K6,j = SXAr 

3Kj = K~ - K~.g = SXA 3r (4.10a) 

6Bj = :Tr(K6 + K6 +) 6Kj: (4.10b) 

The various hypotheses of Theorem 2.1 are verified in Lemmas 4.6 and 
4.9-4.11 below. 

k e m m a  4.6. For E > 0, the following estimates are uniform in ~ > 0: 

]ID-,KolI2.2 < ~ (4.11a) 

lID-'  3KIN2,2 ~< ce -cj (4.11b) 

Romark. For notational convenience only, we take A to be a square 
centered at the origin and with side length L = (2N + 1)6 for a positive 
integer N. Moreover, since we are taking mb = ms, we shall often write 
/x(p) instead of D(p). 

Proof. (4.11 a) will follow from a trivial modification of our proof  of 
(4.1 lb), so that we restrict ourselves to the latter bound. We compute that 

ll D-~3KJl]2 2 = Tr D-16r -1-2~8r 

= (22)~ f~ dx dy f~. dp dp' fT dk dk' 

• exp{ip.(x - y)  + ip ' . (y  - x) + ik.[x]3 - ik ' .[y]6} 

• D(p)-ZD(p')-z-2~t j(k) t j (k ' )~(k)~(k ') 

where 

t~(k) = 1 - e-"~ (k)/2~ 
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If  Ao denotes the lattice square centered at 0 and with area 8 3, then 

dx  exp ( ipx  - ip ' x  + ik[x]8) 

= ~ exp[i(p - p '  + k)nS] dx  exp[i(p - p ' )x]  
o 

= 2(P - P' + k)~b(p - p ' )  

where 

and 

33 (33 ]-L r sin[p,S(N + �89 
2(P) = ~ ~ e~""o = - -  , ~ .  2rr 11~=o sin(pi3/2) 
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l f .  1 ~  sin(p~S/2) ~b(p) = ~ dx  e ~w = 
o i=o pi3/2 

With this notat ion we have from (4 .4)  

IID-r = f [[D-r 22 & 

x ~ (p  -- p ')32( p -- p '  + k) 2 (4.12) 

Since 1 - e -~ 4 u ~ f o r u  i> 0 a n d 0  ~< a ~< 1, 

0 <~ t j(k)  <<. ~0~/(2K)" (4.13) 

where we choose a < e. Making the change of variable p -+ p + p'  and using 
the estimate (see Appendix C, Lemma C5) 

f d3p D ( p  + p ' ) - l D ( p ' ) - l - 3 "  <~ const D ( p )  -3~ 

and the estimate (4.9), we obtain 

IID-~aK,//N,2 < c,c-3~ dk lx (k ) -2+2~  f dp D(p) -2r  p + k)  2 
"JT8 d 

(4.14) 

To show that  (4.14) is finite, uniformly in 8, it suffices to show that  
(/~ = D )  

f dp - 2q, b(p)32( p k )  3 <<. - 3~ (4.15) /z(p) + c/z(k) 
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We wish to est imate the left side of  (4.15) in terms of  one-dimensional  
integrals. I t  is a reasonable  abuse of  nota t ion to use the letters/x, ~b, and 2 to 
denote the respective one-dimensional  analogs:/x(k,)  2 = m 2 + k, 2, 

N 

~,  e~* "~ (4.16a) 2(k0 = (27r) lj2 , = - N  

3 sin[k,8(N + �89 
- (27r) lj2 sin(k,8/2) (4.16b) 

1 ~ / 2  sin(k,8/2) 
4'(k~) - -~ ~,2 e'k'x dx - k,8/2 (4.16c) 

N o w  it follows f rom the positivity of  perfect squares that /z(k)  2 /> ix(ko)lx(kz); 
moreover ,  r = ~(ko)C(kl) and 2(k) = 2(ko)2(kl). Therefore ,  we need only 
consider 

f dptx(p)-~C(p)22(p + k) 2, Ik]<<. (4.17) 1,r~ - 1  

where p and k now denote one-dimensional  variables. This expression can be 
rewrit ten as 

t" - ~16 

~ J,~lo dp Ix(p - 2~nS-1)-EC(p - 2Tm3-1)22( p + k) 2 

because 2 is periodic. No te  that  for n va 0 and [p] ~< Tr8 -1 we have 

>(p - 2~rn3-1) -~ ~< /x(TrS-1) -~ <~ /x(k) -~, [k[ ~< 7r8 -z 

and 

]~b(p - 27rn3-~)] = [sin(p3/2 - 7rn)[ c 

Hence  (4.17) is domina ted  by 

- ,  @ )?(p + k)~ -~/~ dp I~(p)-~b(p)22( p + k) 2 + const/z(k)  ~ ~_~/~ 

for  [k] ~< ~a-~.  I t  follows f rom (4.16a) that  

f_ ~/o dp2(p + k) 2 = 3 ( 2 N +  1) = L  (4.18) 
- ~ l  6 

which is independent  o f  3, so it remains  only to est imate the first term, which 
we b reak  up into two integrals: 

dp ~(P)-~r + k) 2 + dp ix(p)-~r p + k) 2 
/26  "< [P[ g ~ / d  - ~ j 2 c s  

(4.19) 
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Now, for IPl > ~r/28, 

ff(p)-~ ~< ff(�89 -1)-~ ~< const ff(rrS-1) -~ ~< const if(k)-~ 

for Ik[ ~< ~rS- 1. Since Ir ~< 1, it follows that the first integral is dominated 
by 

const f f (k)-~f  dp 2(P + k) 2 
*' ~ / 2 0  < IP l  <:rdO 

~< const if(k)- 'f~I~ dp 2(P + k) 2 
J _  -~16 

= const if(k)-~L 

In order to estimate the second term of (4.19), we pause for the following 
lemma: 

k e m m a  4.7. If  [u I ~< 23-~8 -1, then 12(u)l -< const (1 + lul) -1, where 
the constant is independent of 8. 

Proof, If lul ~ ~-~a -1, then 1u8/21 <. �88 so by (4.16b), 

8 lsin[uS(N + �89 8 1 const 
12(u)l = (2rr) 1/2 [sin(uS/2)[ ~< (2~r) 1/2 const laul -- lul 

because (sin y)/y is bounded away from zero for ]Y[ ~< 3~/4. On the other 
hand, by (4.1 6a), 

3 L 12(u)[ ~< ~ (2N + 1) [ ]  

Proof ofLemma 4.6 (concluded). In our situation [k I ~< ~r8 -1, so if 
]p[ ~< �89 -~, it follows from Lemma 4.7 that 

12(P + k)l ~< const (l + [p + kl) -1 

Since Ir ~< 1, we see that the second integral in (4.19) is dominated by 

f 
~;126 

const dp if(p)-'(1 + [p + kl) -2 
a~ .g126  

~< const dp ff(p)-~(1 + IP + kl) -2 

By Lemma C1, the last integral is dominated by const if(k) -~. In summary, 
we have shown that (4.17) has this decay in k, for ]k] ~< ~rS-1, with constants 
independent of & This establishes (4.15) and the lemma. [ ]  

The next lemma to be verified is: 
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L e m m a  4.8. For  �9 < + the following estimates are uniform in 8: 

[[D'KoI]<4 < oo (4.20a) 

IID'SK/[<~ ~< const e -~ (4.20b) 

Remark.  It is worth pointing out that  the bounds (4. I la) and (4.20a) are 
t ransparent  in configuration space if one uses the bound (4.7). For  example, 

= 2 j [  d 2 x j [  d2y D - l ( x  - y ) D - 1 - 2 ' ( x  - y)Co(x, y)  

~<.constfa d2xfa d2y D - l ( x  - y ) D - l - = ' ( x  - y)  log([x - y [ -1  + 2) 

lxl ~-~ at x = 0. The estimation of  [ID~K~]]<r which is finite since D-~(x)  
is similar: 

f ll D~K~ II ~ dt z 

2 ( d2x  D-l(xl- x=)D-l+ O(x2-  3)P-l(x3- 
A 

3A 4 i = 1  

• 0 -1 +2~(x4 - xO{C~(xl, x2)V~(x3, x4) + C~(xl, xa)Co(x2, xO 

+ C~(xz, xOC~(x2, xa)} (4.21) 

which is finite uniformly in 8, provided that  �9 < 1/2. 
It  seems extremely difficult to prove (4.20) by direct computat ion in 

momen tum space. Instead we shall rely on configuration-space computat ions 
such as those above to obtain bounds on quantities like ]] D~K~.jlI<4 that  are 
uni form in both  8 and j ;  in this way we shall reduce the tail bound (4.20b) to 
a simpler cg2.2 bound  as in (4.11b). 

Proof  o f  L e m m o  4.8. Once again, the p roo f  of  the first estimate is 
almost identical to the p roof  of  the second. Consider 

IID~SK,[] 4 = Tr (SK , D2,SKjSK , D=~SK,) 

= Tr(D~3Kj*D=~SKjD~D-~3Kr -~) 

where a > 0 is to be chosen later. By the Schwarz inequality, 

]l D'SKjll ? -< 11D~3Kj*D2"SKj D~ ]12 ]l D-"SKy*D2"SKjD- ~ ]]z 

= II D~SKs D~ II 4 = II D~3Kj D - o~ II 2 

< lID'aKjD~42IID~SKjD-~II=2 



The FKG Inequality for the Yukawa2 Quantum Field Theory 161 

Hence  

I]D~SKjl]~.4 <<- IID~aKjD~[I~ 4.4 [IDeSK, D-~H24 dt* 

~< const 11D~SKj p~ 1!~,4 ]1D~3Kj D-  ~ 1122.2 (4.22) 

by the Schwarz inequality and hypercontract ivi ty.  N o w  the computa t ion  of  
]ID aX, is identical to the computa t ion  of  IiD- a<NN,2 in (4.12) 
except that  we have the replacements  D(p)-1 _+ D(p)-  1-2~ and D(p')-1-2~ 
-+D(p')-I+2L Making  the change of  variable p--up + p' as before,  we 
integrate out p '  via the est imate 

f d2p D(p + <~ D(p)  2~-2~ p') - l - 2~ D(p') - l + 2E const 

which holds i fr  < c~ < 1/2 (see L e m m a  C5). The  est imation now proceeds as 
before,  with a - E replacing E. Thus, we may  conclude that  

[ID~SKjD-=Ilz,= <<. const e -cj 

for some c > 0, where the constants  are independent  of  8 (provided that  
�9 < a < 1/2). Therefore ,  it is clear f rom (4.22) that  we need only obtain a 
un i form bound  on II D~a<O~ll4,~. Clearly, 

/IDcSKjD~II<~ ~< ]IDCK~D~][4.~ + IIDCK~.,D~I]4.~ 

We estimate each of  these terms by a configurat ion-space calculation. We 
obtain an expression like (4.21) except that  D -1 is replaced by D -1+2~ and, 
in the case of  the second term, C~ is replaced by C<j. By (4.7) and L e m m a  C6 
the resulting integrals are finite if  u + r < 1/2. This establishes (4.20) for  
�9 < 1/4. �9 

k e m m a  4.9.  The  following estimates are uni form in 3: 

[[Bo[lL~ < oo (4.23a) 

!lSB, II~ ~< const e -~j (4.23b) 

for  some c > 0. 

Proof. As before,  the p r o o f  of  (4.23a) is essentially contained in the 
p r o o f  of  (4.23b). By (2.26) 

8Bj = c (  dx dy b(x - y):~a(x)8(Jj(y): 
JA x A  

where 

[~(P) = (2@ f {m2 - q ( q  + p) \-ff((q~ D(q T--p-~ + D-D@2) 

= O[log(2 + [p[)] = O[log(2 + IPo[) + log(2 + [Pll)] (4.24) 
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as is shown in Appendix  A of  Ref. 16. As in the computa t ions  leading to 
(4.12), we find in m o m e n t u m  space that  

8B, = c~  @ ~ dk dk' D(p)2(p - k ' )2(p - k)~b(p)2t,(k'):~(k)'~(k'): ,) Jr 

I t  follows f rom (4.4) and the fact that  6, 2, and r are even that  

{[ 8Bsll ~= = c ~ dk dk'  t*a(k) - 2/~a(k') - =[tj(k)t,(k') + t,(k')~] 
aT 

x I f  dp b(p)r - k ) 2 ( p -  k')] 2 

We apply  the estimates (4.8) and (4.24) and the est imate (4.13) to extract  the 
desired factor  K-2~ for  some a > 0, and we are left with bounding the one- 
dimensional  integral 

fazl6 ~16 
- =/a dk ~_ =/a dk' [t~(k) -* + ~/2/~(k') - '  + ~/2 + /~(k)  - 1/~(k') -1 + qGa(k, k') 2 

(4.25) 

where 

G 6 ( k , k ' ) -  I f  dp log(2 + , p , )~ (p )2 , y~ (p -k )2 (p  - k ' ) , ]  

Here  we adop t  the same abuse of  nota t ion  as in the p r o o f  of  L e m m a  4.6 [see 
(4.16) for the definitions of  ~b and 2]. We shall bound  (4.25) when ~ < 1/2. 
We break  up the p integrat ion into intervals as before:  

~ 

Ga(k, k') = dp ~(p - 27rn8-1) 2 
n -Trio 

x lo8(2 + [p - 2rma-ll)12(p - k)2(P - k')t 

This time, we need the more  subtle inequality:  for n # 0 and ]p] ~< 7r/8, 

[sin(pS/2 - ~ rn) l  sin(pS/2) Ipl~a ~ 
[r = ~ 7 f 2 5  ~ - p--~/2-~g-n ~< const In] 

where  h is to be chosen below, 0 < h ~< 1. Also, ]r ~< 1, so we have 

fnl6 
Go(k, k ')  <<, dp iog(2 + ]P[)[2(P - k)2(P - k')[ + const x 8 =a 

• inl~ @ Ipl~l~(p k)2(p k')l 

f 
~ / a  

<<. c @ (a + ] p l ) ~ q ~ ( p  - k ) ~ ( p  - k')  I -= Fo(k,  k ' )  (4.26) 
- ~16 
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Therefore ,  (4.25) is domina ted  by 

elk ~_ =/a elk' {t~(k) -1 + ~/2/~(k, ) -x + /~(k )  - 1/z(k') -1 + ~}Fa(k, k ' )  2 

(4.27) 

To  est imate (4.27) we divide up the k - k '  in tegrat ion region into four  
subregions:  

Region 1: Both k, k '  ~ T20 = [ - ~ / 2 3 ,  ~v/23]. 
Region 2: One of  k, k '  e T2o. 
Region 3: Nei ther  k, k '  e T2a with k, k '  on opposi te  sides of  T2o. 
Region 4: Neither  k, k '  e T26 with k, k '  on the same side of  T2o. 

In  region 1 we have ]p - k], ]p - k '  I ~< 37r/23 in (4.26), so that  by 
L e m m a  4.7 

Fa(k, k') <~ e dp (1 + ]pl)2a(1 + IP - k [ ) - l (  1 + ]P - k '])  -1 

By L e m m a  C3, for  v < 1 - 2A, 

Fa(k, k') <~ c(1 + [k - k '[)-~(1 + lk] 2~ + ]k't 2x) -= F(k, k') (4.28) 

Plugging this est imate into (4.27), we see by L e m m a  C3 that  the resulting 
integral  is convergent ,  provided 2v > a + 4h, i.e., if  41 < 1 - a[2. 

In  region 2 we may  assume without  loss of  generali ty that  ]k I ~< . / 2 a  
and ~/28 ~< k '  ~< ~/8. We write 

= + f / L  + - - 

(4.29) 

In  the second integral we still have [p - k'[ ~< 7~[43, so that  by (a slight 
general izat ion of)  L e m m a  4.7 we carry out the est imates as in region 1. As for  
the first integral in (4.29), we bound  it by L e m m a  4.7: 

f -a~/4a dp(1 + [p])Zx(1 + [ p -  k l ) - l [ 2 ( p -  k')l 

~< c3-2x(1 + ~r/4~)-lJ_~,a dp 12(P - k')l (4.30) 

since IP - k[ /> ~-/4~. By the Schwarz inequali ty 

I~(p  - k ' ) l  @ ~< c ~-1 '~  ]~(p  - k ' ) l  ~ @ = o ( ~ - ~ ' ~ )  
,J-~r/a 

so that  (4.30) is 0(31-2x-1/2). Plugging this bound  into (4.27), we obtain  a 
bound  un i form in 3 provided  1 - 2h - 1/2 > c~/2, i.e., if 4 t  < 1 - c~. 
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In region 3 we may assume without  loss of  generality that k ~< -Tr/2g, 
k'  /> zr/2~ and we may restrict ourselves to integration over p /> 0 in (4.26). 
Since 

0 ~< k - p  + 2zr/3 ~< 37r/2~, -7r/2~ ~< k' - p  ~< 7r/~ 

it follows as in the case of  region 1 f rom the periodicity of  2 that 

o~/~dp (1 + p)2XI2(p - k)2(p - k')[ 

<~ e dp(1 + [p[)Za(1 + Ik' - p l ) - l (1  + [k + 2zr/3 - p l )  -z 
oo 

<~ eF(k + 27r/3, k') 

where F is defined in (4.28). Plugging this bound into (4.27) and using the 
fact that  [k + 2~r/3[ ~< eIkl, we obtain a bound independent  of  3 by Lemma 
C3 provided 4A < 1 - a/2. 

In region 4 we may assume that  zr/23 ~< k, k' ~< ~/& For  p /> 0, the 
estimate proceeds as in region 1. For  p ~< 0 we have p - k + 27r/b and 
p - k' + 2~r/3 in [0, 3~/2~], and we reason as in the case of  region 3 to obtain 
a bound 

cF(k + 27r/~, k' + 27r/~) ~< e'F(k, k') 

This completes the argument  that (4.27) and hence (4.25) are bounded 
uniformly in & �9 

Taking stock, we see that we have verified hypotheses (i) and (ii) of  
Theorem 2.1. As for hypothesis (iii): 

L e m m a  4.10.  There  is a constant  c independent  of  ~ a n d j  such that 

f Tr(K2,s + Kg,Ko.s) <~ cj d~ (4.31) 

ProoL By (2.26) the left side of  (4.31) equals 

A x A  A x A  

(4.32) 
where 

c ( [  m 2 - p ' ( p  +q)  ~(p) ) [ u 47 
= 0(1) 

1 ] 
+ D(p)D(p + q) dq 

(4.33) 
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by Appendix A of Ref. 16. Hence in momentum space 

(4.32) = c f dp fro dk ~(p)tx6(k)-2e-"~"~(p)22( p - k) 2 

<. ~ dk tx;2e-"~ I~: <, cj 
v T  

by (4.33), (4.15), and (4.6). [ ]  

The last two hypotheses of Theorem 2.1 concern the object 

Wo = �89 - Ko*Ko)" 

= f f  dxdyw(x-y) 'bo(x)~5~(y):  
A x A  

where, as in the case of Bo (Ref. 16, Appendix A), 

~(p) ~< c log(2 + [p[) (4.34) 

Since the lattice cutoff does not affect the kernel w of Wo, we have v~(p) 7> 0 
(see the discussion before Theorem 2.2); i.e., hypothesis (v) of Theorem 2.1 
holds. The remaining hypothesis (iv) follows by an identical argument to 
that of Lemma 4.9, since we have the same bound (4.34) for w as we had for b 
[see (4.24)]. Thus: 

Lemrna 4.11. []W0[IL2 < o% uniformly in ~. 

To summarize: we have verified the hypotheses of Theorem 2.1 for pd 
and have thus established Lemma 4.2. It remains to prove Lemmas 4.3 and 
4.4. 

Proof o f / e m m a  4.3. By complex interpolation [see Eq. (2.9)] and an 
application of the Schwarz inequality, it suffices to show for some E > 0 that 

I]D-XKo - K)]12.2 -+ 0 (4.35) 

I/D~(K0 - K)[[~,~ ~ 0 (4.36) 

as ~ --~ 0. By a computation similar to the one in the proof  of Lemma 4.6, we 
see that 

IID-~(K6 - K)H~.a = c f dp f dp' fr dk 
b 

I I 
(4.37) 

where we have applied both (4.4) and the fact that 

f~(k)g(k ' )  dtz = ~(k - k ')lx~(k)its(k)1, c R 2, k' e To k 
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As in the case ofP(r (Ref. 32, Lemma IX.4), the convergence to 0 of (4.37) 
is proven via the dominated convergence theorem. First, we make the change 
of variable p ~ p + p' and appeal to Lemma C5 to integrate out p ' :  

[ID-~(K~ - K)H~. 2 

~< 
~(k) ~(k) 

(4.38) 
Second, we note that as ~ -+ 0, xTjk) -+ 1, ~ (k )  -+/~(k), 

r --~ 1 (4.39a) 

and 
2(P + k ) -+  2a(P + k) (4.39b) 

for p, k s R 2, so the integrand of (4.38) converges to zero pointwise. [(4.39a) 
follows from (4.16c), and (4.39b) holds because (4.16a) is just the Riemann 
sum for the integral that gives 2A.] Thus, we need only bound the integrand in 
(4.38) by a sum of two integrable functions, where one of them is independent 
of 3 and the integral of the other one goes to zero as 3 ~ 0. Now 

12~(P + k)l = 1 ~  
[sin[(p, + kOL/2]] 1 

~=o ]p~ + kdL/2  ~< const ]~r (1 + IP* + kd) -x 

so that it suffices to bound the function 

t~(p ) -  2~XT,(k)r + k)2l~o(k)-2 

As usual, it suffices to estimate the one-dimensional expression [we have also 
applied (4.8)] 

iz(p)-~X~(k)r + k)2tz(k) -~ 

We break this up into two terms via 1 = Xr2o(p) + [1 - Xr2~(p)] and apply 
Lemma 4.7 to dominate the first term by 

const x tz(p)-~(1 + [p + kl)-2tz(k) -~ 

which is both independent of ~ and integrable. The integral of the second term 
is dominated by 

dk tz(k) -~ dp ~(p - 27rna-~)22( p + k)2/~(p)-~ 
h e 0  - z 1 6  - ~ 1 6  

+ & ~(k)-~ @ )?@ + k)~r 
- ~16 12z~d- I < lPl < ~d - 1  

f z~] 6 

+ c t~(k) -~-~/2 dkLt~(�89 -~t2 
- z/6 

~< et~(�89 ~) -~/z 
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where we have estimated as in the proof of Lemma 4.5. Obviously, 
t ~ ( ~ , , ~ - l )  -~j2 - +  0 a s  ~ - +  O. 

We prove (4.36) by the estimate 

c~ 2 [IDr - K)[]~.4 ~< c o n s t  IID~(Ko - K~D - ~ ,  ~.~ ~ [[D~(K6 - K ) D  114,~ 

[see (4.22)]. The first factor converges to zero for a > e, by a trivial modifica- 
tion of the above argument. If  a + �9 < �89 the second factor is bounded uni- 
formly in 3 by explicit computation in configuration space [see (4.21)]. [ ]  

Proof of lernma 4.4. As in the computations of Lemma 4.9, 

f ( B -  Bo)2 d/z = const fro dk fT~ dk'f dp f dp' D(p)D(p') 

- 2(k + p!2(k' - p)] x [ 2A(k + P)2A(k' P) _ ~(p)2 
tz(k )l~(k') ~ ( k - ~ ( k )  

+ similar integral. 

We concentrate on the first integral, which can be rewritten as 

fr dk dk' f dp D(p)[f(p, k, k') - f~(p, k, k')] (4.40) 
2 

J 

where 

f (p,  k, k') = ~A(P + k)~A(p -- k') 
t@)~(k') 

+ k)2(p ~ k') 
fo(P, k, k') = 4,(p) 2 2(P ~(k-~o(kr) 

because b, 2A, 2, and ~b are even functions. Clearly, as 3 ~ O, 

fo(P, k, k') -+ f (p ,  k, k') 

so to show that f d2p D(p)[f(p, k, k') - f6(P, k, k')] -+ 0 it suffices to show 
that 

~(p)22( p + k)2(p - k')~(p) 

is dominated by a sum of p-integrable functions that are either independent 
of 3 or have p-integrals converging to zero as 3 -+ 0. We see that this can be 
done using the estimations in the proof  of Lemma 4.9. In those cases where 
one does not obtain an integrable bound independent of 3, one can always 
pick up a factor of tz(8-1)- ~, which goes to zero as ~ -+ 0. We omit the details. 
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To complete the p roo f  that  (4.40) --> 0 it then suffices to bound 

Xr,(k)xT~(k') f dp [(p)fo(p, k, k') 
2 

by a sum of  two integrable functions of  k, k '  where one of  them is independent  
o f  8 and the integral o f  the other goes to zero. Such a bound can be extracted 
f rom the p roo f  o f  L e m m a  4.9. �9 

This completes our  p roo f  of  Theorem 4.1. 

5. SPACE C U T O F F  OF THE F E R M I  M A S S  

Throughou t  this section the lattice cutoff on the boson field is in effect. 
Thus, in terms of  the Fermi two-point  function S o f  (1.12), we set 

K = Sr S '  = (1 - K ) - I S  (5.1) 

regarded as operators on ~ = S/r The corresponding objects with a spatially 
cutoff Fermi mass in XD~ are defined as the operators on ~0 :  

Sn = (1 + SomxD,,)-ISo (5.2a) 

KR = SRr (5.2b) 

SR' = (1 - K~)-*SR = (1 - Sor + SomxD,)-lSo = (1 - Soh)-*So 

(5.2c) 

where h = r - rnx,~. Referring to (3.1), we see that  by Theorem 3.3 we 
have an inequality o f  the desired form (1.19), namely, 

tr SR'(x, y)SR'(y, x) < O, x g= y (5.3) 

However,  it remains to remove the spatial cutoff, i.e., to take the limit R -+ w. 
It  is tempting to try to take R--> oo directly in (5.3). Indeed, one can 

obtain an interesting result along these lines: 

T h e o r e m  5 . 1 .  I f  (1 - K) -~ is a bounded  operator  on ~m, then for 
almost  all x , y  there is a sequence {Rn} such that  R ~ - + o o  and 
l im,+ ~ S~,,(x, y) = S'(x, y) and hence 

tr S'(x, y)S'(y,  x) <<. 0 (5.4) 

for almost  all x, y. 
We give a p roo f  o f  this theorem in Appendix B. The trouble with this 

approach,  however, is that  we do not  know whether ( 1 -  K) - ~ =  
(1 - Sr -~ is bounded  for all possible values of  the lattice field r 
Equivalently, we do not  know whether deta(1 - Sr > 0 for all r (see 
Ref. 16 for some results in this direction). In  the application of  Theorem 1.1 
to the p roo f  o f  the F K G  inequality it seems crucial that  the interaction 
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density involved does not  vanish anywhere (see Appendix A). Therefore  we 
are obliged to consider the convergence of  the entire theory as R --* ov and 
not just that  o f  the two-point  function (see Theorem 5.2 below). 

We first face a slight problem in that  the operators  in (5.1) and (5.2) are 
defined on different Hilbert  spaces, j(r and ~o ,  respectively. By Theorem 3.1, 
KR is a cg~ opera tor  on a(fo and (i - KR) -1 is bounded  on J~o. But KR is not  
an operator  on ~ ,  because its image elements decay too slowly at infinity in 
x space. To remedy this discrepancy we find it convenient  to introduce an 
additional spatial cutoff: let ~ ~ Co ~ with supp ~ c D1 and ~ = 1 on D1/2, 
and let ~R(x) = ~(x/R), so that supp ~R c DR and ~R = 1 on D~12. Since we 
are interested in the limiting situation as R--> o% we may assume that  
A c DRt4; f rom the definition (5.2b) we have 

K~R = KR (5.5) 

N o w  by Lemma C7, ~RK~ is a bounded  operator  on ~ .  In fact, by the remark 
following Lemma 5.5 below, ~RKR is ga on J~. Hence it makes sense to consider 
deta(1 - ~RKR) on ~ .  We therefore take as our cutoff density [see (1.9), 

(1.16)1 

p~ = deta(l - ~RKR)exp{-�89 2 + K ' K ] : }  (5.6) 

Note  that  (formally) the CR can actually be dropped f rom (5.6) because of  
(5.5) and the relation det(1 - AB) = det(1 - BA). The noncutoff  density is 

p = deta(1 - K ) e x p [ - � 8 9  2 + K ' K ) : ]  

Our  goal in this section is to prove:  

T h e o r e m  5.2. For  any p < ~ ,  pR~ --> p in LP(dI,) for some sequence 
R~ --> oo. 

This convergence result is more  involved than that  of  Theorem 5.1, but  
it avoids the problem of  the vanishing determinant,  because the correlation 
inequality for the case of  cutoff mass will now merely carry over to the 
limiting case o f  constant  mass. The following lemma establishes positivity of  
the determinant  in the cutoff mass case. 

L e m m a  5.3.  (a) (1 - ;nKR) -1 is a bounded  operator  on J f  and 

( 1  - ~RKR) -* = 1 -- ;s + 12R(1 -- KR) -~ (5.7) 

(b) For  all 4'6, deta(1 - ~RKR) > 0. 

Proof. (a) Since (1 - KR) -~ is a bounded  operator  on Jfo, it follows 
f rom Lemma C7 that  ~R(1 - KR) -~ is a bounded  operator  on ~ .  By (5.5) 

(1 - ~RKR)[1 -- (~ + ~(1  - KR)-q 
= 1 - ~ + g ~ ( 1  - K ~ )  - *  - ~ K ~ ( 1  - K ~ )  - ~  

= 1  
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The computation of the product in the reverse order is similar. This establishes 
(5.7) and part (a), since multiplication by ~R is a bounded operator on ~ .  

(b) Since ~RKR has a real kernel, deta(1 - ~RKR) is real. By part (a) we 
know that deta(1 - A~RKR) # 0 for any h ~ N and that it is a continuous 
function of h. At h -- 0 it has the value 1 and hence must be positive 
everywhere. �9 

Our proof  of Theorem 5.2 follows the strategy of Lemma 2.4 and so we 
begin by showing: 

k e m m a  5.4. For any p < 0% OR ~ L~(dt z) uniformly in R. 

Proof. We write 

~RKR = K + (~RKR -- K) -= K + VR (5.8) 

and apply Theorem 2.2 to K'  = ~RKn. Actually in the present situation with a 
fixed lattice cutoff 8 > 0, we do not need the full force of Theorem 2.2 and 
we can dispense with the expansion of pR in terms of a sequence of ultraviolet 
cutoffs. We need only verify that hypotheses (b) and (d) of Theorem 2.2 hold 
with estimates uniform in R. But hypothesis (b) on K has already been 
checked in the paragraph preceding Theorem 2.2, and the bounds are cer- 
tainly uniform in R since K is independent of R. It thus remains to verify (d): 
for some E > 0, 

IIOcVRII2.2 + IIV~D~H2.2 < oo (5.9) 

uniformly in R. It is obvious that (5.9) is implied by the next lemma. �9 

k e m m a  5.5 For e < 1/2 

IIDcV~ll2.~ + II V~D'I[~.= -+ 0 (5.10) 
as R - +  m. 

Remark. The proof  of the lemma shows that D'  VR ~ 52 c 53 for all r 
Since K ~ 5a, we see that ~RKR ~ 5 , .  

The proof  of Lemma 5.5 is based on an explicit calculation of SR that 
provides a bound uniform in R. Such a calculation is possible because the 
spherical symmetry of the cutoff mass allows a series expansion for SR 
involving Bessel functions. We shall use complex notation as in Section 3: 
let z = Xo + ix1, let t = Yo + iyl ~ A be fixed for the moment and set 

u ( z )  = - s~ y)  - i s~ (x ,  y),  a(z) = s~176 y)  + is~~ y)  

bearing in mind that u and t7 will depend on both R and t. Then we have the 
integral equations 

imf l  d2 ~ u(~) 1 (5.1 la) 
u ( z )  - --g- ~t ~ ~ - ,~(z - t )  

i m  f t  d2 ~ a(~) - i  (5.1 lb) z T ( z ) - T  eI~R z -  ~ - ~ r ( z -  t) 
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We will concentrate on (5.1 la), since the solution of (5.1 lb) will be similar. 
The differential equation corresponding to (5.11a) is 

~ u ( z )  -- imxD.(z)u(z)  = 3(z - t) 

Let w be the standard solution of the free equation 

~ w ( z )  - imw(z)  = ~(z - t) 

and set v = u - w. Thus we have the equations 

O~v(z) - imv(z)  = 0, ]z[ < R 

O~u(z) = 0,  Izl > R 

and u(z) must agree with v(z) + w(z)  at Izl = R. Since u(z) is analytic for 
Izl > g and must decay like z -1, we have the expansion 

u(z) = ~ c_mz -m, ]z[ > R 
m = l  

Transforming to polar coordinates, we get 

~v id  ~ ~v 
e~~ ~- r + - - - - -  i m p = O ,  r < R 

r 00 (5.12) 

R ~ 2 C-mr-me-tm~ r ~ R 
m = l  

Let v.(r)  and w.( r )  be the Fourier coefficients with respect to 0 of  v and w, 
respectively. Then (5.12) becomes 

n 
v . ' ( r )  - r v . (r)  - i rnv_ ._ l ( r )  = O, r < R (5.13) 

Combining this equation with the one obtained by the index change 
n -+ - n  - 1, we get the second-order equation 

1 v . ' ( r )  m s v . ( r )  = 0 v;;(r) + r - + 7 

This is the equation satisfied by the nth-order Bessel functions with imaginary 
argument. Thus (see Ref. 34) for the definitions and properties of  the Bessel 
functions we use) 

v=(r) = a J ~ ( m r ) ,  r < R 

and 

u(z)  = w ( z ) ' +  ~ a=I~(mr)e ~~ r = lz[ < R (5.14) 
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[K.(mr) does not  appear  because v~ is regular on the disk.] Applying the 
recursion relations 

Ix_ 1(mr) - In + 1(mr) = (2n/mr)I~(mr) (5.15) 

I~_l(mr) + I .+l(mr)  = 2I~'(mr) 

and the symmetry I _ .  = I . ,  we find that  Eq. (5.13) reduces to 

a - n - 1  = i~n 

By the compatibil i ty condit ion at ]z[ = R 

aJn(mR) + w~(R) = O, n /> 0 

SO 

a. = - w . ( R ) / I . ( m R ) ,  n >>. 0 

am = - i w - ~ - l ( R ) / I . + l ( m R ) ,  n <~ - 1 

Now, I . (mr) is increasing in r, so that  for  r < R and n >/ 0 

[a.[I~(mr) <~ Iw.(R)l (5.16a) 

For  n ~< - 1, it follows f rom (5.15) that  

I .+l(mR) >1 (2]n[/mR)I~(mR) 

so that  

[a.[I~(mr) <<. (mR/Zln])lw_._~(R)[ (5.16b) 

But w is just the second column of  the two-point  function (1.12), which is C o~ 
for z ~a t and together with its derivatives has exponential decay in [z - t I. 
Hence by integration by parts for n > 0 

1 (2~ ] 02w(Re~O) c e_a( R_ I*l) 

where 0 < a < m; the case n < 0 is similar. In  this way we obtain f rom 
(5.16), for r < R, 

la.]I.(mr) <~ [c/(n z + 1)]e -a("-I~l) 

Substitution o f  this bound  into (5.14) yields for R/2 <~ ]z I <~ R 

lu(z)[ ~ [w(z)[ + ce -a("-t~t) <<. cons t e  -~l~-tl (5.17) 

As the calculation for ~7(z) is practically identical, we may conclude that 
(5.17) holds for  the components  of  SR: 

[ e m m a  5.6. There are constants a > 0 and e > 0 such that  for 
R/2 <~ IxI <<. R and ]y] ~< R/4, 

IS~'(x, y)[ ~< ce -~lx-uj (5.18) 
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Proof of Lemma 5.5. Since SR satisfies the equat ion [see (1.13)] 

[ -~ .  a~ + mxD.(x)]SR(x, y) = 8(x - y) 

we have 

( -8"  a~ + m)[~R(x)SR(x, y) -- S(x, y)] 

= ( - P .  aCR)SR + ~Rm(1 -- XDR)SR + (CR -- 1)8 = ( - - f i '  aCR)SR 

i f y  e A, since ~R = 0 outside DR and ~R = 1 on A. Let  hR = -- /?~R. Thus,  
f rom the definition (5.8) of  V•, ( - ~  + m)VR = hRK~. We then compute  
tha t  

IID V ]]2 2 = Tr  D-1V~*DZ+2eVR 

= Tr  D - 1 [ ( - 5 ~  + m)VRyD-I+2~(-~a + m)V~ 

= Tr  D-1KR*hRD-I+2~hRKR 

= ~ (  dx dy D-l(x-y)r  
A x A  

x l . f f  dzdzt tr SR(Y'z)hR(z)D-l+Z~(z - z')hR(zt)SR(z',x)] 

(5.19) 

Since hR(z) is suppor ted  in the annulus DR\DR/z, we can apply the bound  
(5.18) to conclude that  the quant i ty  in square brackets  in (5.19) is O(e-aR/2). 
Note  that  hR(z) = O(R-1) and that  D - 1  + 2~ has an integrable singularity for  
e < 1/2. Hence  I]D VRt/  2 = The bound  on VRD ~ is similar and 
we obtain  (5.10) upon  integrat ing with respect  to d/~. �9 

Proof of Theorem 5.2. By L e m m a s  2.4 and 5.4, the p roo f  of  the theorem 
will be comple ted  by the facts 

]]~KR - KlIa.a -+  0 (5.20) 

II :TrK({RKR) 2 - K2]: liE= -+  0 (5.21) 

as R ---> oo. But by hypercontract ivi ty,  (2m 

IICRK~- Kt]a,a = llV~IJa.a ,< const x llV~11=,2 

so that  (5.20) is a consequence of  (5.10). As for (5.21), note that  

ITr[(r = -- K2][ = ]Tr VR = + 2 Tr  VnK[ 

< Ilv [[  = + 2]IV D=  =IID-= KI[2 
Hence  (5.21) also follows f rom (5.10). �9 
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6. FKG I N E Q U A L I T Y  FOR SCALAR Y2 

We are now ready to prove our main result, namely, that (1.28) holds. 
As we have already shown in the introduction, this condition yields the F K G  
inequality for the lattice spin system that we have when both the lattice cutoff 
and the space cutoff of Fermi mass have been imposed on the scalar Y2 
model. We have also seen how Theorem 1.2 follows from this result together 
with the convergence theorems of Sections 4 and 5. As our formal calculation 
with variational derivatives in the introduction has indicated, the main input 
in the proof  of  (1.28) will be the theorems of Section 3. 

In the cutoff model the (unnormalized) measure is 

p(K,K) dff = deta(1 - /() exp[ - �89  2 + K*K):]dff (6.1) 

where dff now denotes the free boson measure restricted to the lattice variables 
ql ..... qN associated to the lattice squares A1 ..... AN, respectively, where, in 
this section, A~,..., AN will denote those lattice squares that lie in the box A. 
Thus 

N 

= x , q J  

j = l  

where XJ denotes the characteristic function of Aj. K is defined by (5.1) and 

g = gRKR = gRSRCaXa (6.2) 

where SR is defined by (5.2a) and ~R e Co~176 is specified in Section 5. We 
also set S = gRSR, SO that g = Sr 

We wish to show that the measure (6.1) satisfies the hypotheses of  
Theorem 1.1. There is nothing to prove about dff since by the very definition 
of the lattice approximation (5) dff = const x e x p ( -  �89 Aq) dYq where A is an 
N x N, positive-definite matrix such that, for i # j, (a2/aq~ aq3(-�89 Aq) = 
- A  u > 0. It  thus remains to show that 

W = logp(g,K)  = log deta(1 - R) - �89  2 + K'K): (6.3) 

is in C=(II~ N) and that 
82 W/aqj aq~ >1 0, j # k (6.4) 

Notice that W makes sense for allq because det3(1 - /7) is strictly positive by 
Lemma 5.3. Moreover, U = (1 - /7)-1 is a bounded operator on ~'m. We 
analyze the two terms in (6.3) separately in the next two lemmas. 

Lemrna 6.1. log deta(1 - /7) ~ C2(R N) and 

a2 
aqj aqk log deta(1 - /7) 

= -Tr(U~xyR2Y,  X~)-  Tr(U/7~Xj~X~)- Tr(U~xjR~X~) 
(6.5) 
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Proof. From the definition (6.2), ~R/~q~ = gXk. Hence by Lemma 23 on 
p. 1110 of Ref. 24 

log det3(1 - / ~ )  = - Tr(U/~2Sx~) (6.6) 
0qk 

Note that the right side of (6.6) is well-defined since/~ and SX~ are in ~a. We 
differentiate (6.6) again with respect to qj: the resolvent identity 

h-l(U(q + hqj) - U(q)) = - U ( q  + hq~)SxjU(q) 

and the norm continuity of U(q + hqj) for lh[ < ]] U(q)Sxjl]-1 show that 

~3 U/c~qs = - USxs U 

with convergence of the difference quotient in ~a. Therefore by H61der's 
inequality, (6.6) is differentiable with derivative given by (6.5). �9 

Lemma 6.2. :Tr(/~ 2 + KtK): ~ C2(ItU) and 

e--~-~ ~:Tr(g2 + KtK): 
?qj c3qk 

= Tr(S - S)xjSx~ + Tr Sxj(g - S)Xk + f f dx dy b(x - y) 
~A t d~c 

(6.7) 
where b(x - y) is the kernel of :Tr(K 2 + K'K):. 

Remark. For x r y the distribution 

b(x - y) = tr S(x, y)S(y, x) (6.8) 

and in momentum space [see (2.26)] 

2 f [  1 m, 2 - p . ( p  + k)] b(k) = ~ _ ~  + -ff(p~D((p "+- -k~ J dp = O[ln(2 + [k[) ] 

Hence the second term in (6.7) is well-defined by its momentum integral 

2~r f dk ~)b(k )2k(k  ) 

ProoL In the L ~ proof for p(/~, K) in Section 5 we interpreted the 
expression :Tr(/~ 2 + K'K): as the sum of two well-defined terms 

:Yr(/~ z - K2): + :Tr(K z + K'K): (6.9) 

Explicitly, the first term equals 

[Tr(# - S)xj(S + S)X~] :qJqk: (6.10) 
j ,h:  
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where the operator in question is trace-class by virtue of the estimate for 
0 < ~ < � 8 9  

] ] ( ~ -  S)x,D'H= + / ID- '&, I I=  + llD- Sx [r= < ~ (6.11) 

(this was essentially established in Lemma 5.5). The second term in (6.9) equals 

f dx dy xj(x)b(x - y)x~(y):q,q~: (6.12) 

Note that the Wick constants in (6.10) and (6.12) are finite because of the 
lattice cutoff. Differentiation of (6.9) yields the lemma. �9 

To reproduce the (formal) calculations of Section 1 we need to manipu- 
late the traces in (6.5) and (6.7) in a way that involves taking the trace of 
non-trace-class operators. Accordingly, we first regularize by replacing each 
xJ (and x~) in (6.5) and (6.7) by the Hilbert-Schmidt operator XJ., =- xjh~*, 
where h~* denotes convolution with h~(x)=-n2h(nx), where h ~ Co~(~2), 
h > O, f h dx = 1. The justification for this regularization is provided by the 

following lemma: 

l . emma  6.3. (a) Suppose f (x ,  y) ~ LP(R~t), 1 <~ p <<. oe. Let 

f *  h,~(x, y) = f f(x, x')h~(x' y) dx' 

Then f .  h, - + f i n  L p as n -+ m. 
(b) Suppose A e Tp(Yf), 1 ~< p ~< m. Then Ah=* -+ A in Tp as n -+ m. 

ProoL (a) This is Lemma VII.9(a) of Ref. 10; the proof  uses the fact 
that, as an operator from L p to L p, h,~* is bounded by l]h.l[L1 = 1. 

(b) Note that  h d p )  = h(p/n) -+ 1/(2~) as n -+  m. 

For p = 2 we have explicitly 

~Ah~* - AH22 = const x f D(p)D(q) -1 .,~(p,q)([~(q) - 1 ) 1 2 d p  dq 

which goes to 0 by the Lebesgue dominated convergence theorem. For p < 2 
the result follows by noting that h~* is uniformly bounded in operator norm 
on W and approximating A in ff~ norm by a finite rank operator A0 and using 
the fact that by HSlder's inequality 

IlAoh. * - Aol[~ ~ N~/~'-~/~llAoh,~* -- Ao[I~ 

where N is the rank of Aoh,~ - Ao. For p > 2 we merely approximate by a 
cd2 operator. �9 
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By L e m m a  6.3b, SXj.~ -+  SXJ in ~3, so that  the traces in (6.5) converge as 
the regularization is removed. The same is true in (6.7) since, e.g., 

T r ( S -  S)Xj.nSx~.,~ = T r [ ( S -  S)x~Dqhn*(D-~Sxk)h~ * 

which converges appropriately by (6.11) and the lemma. 
By use o f  the identities 

u g = u - 1 ,  u R 2 = u - 1 - R  

we then rewrite the (regularized) expression (6.5) as 

- [ T r  USxj,,~Ugxk.,~ - Tr Ugxj,,,Sxk,,~ -- Tr USxj,rogSx~,n] 

- {Tr USxj,~Sxk,~) - Tr(gxj,~Sxk,n)] - Tr(USx,,JTSxk,~) 

= - Tr Ugxy,~ USxk,~ + Tr &j,~&~,~ (6.13) 

Note  that  these calculations make sense since xJ.~ ~ (g2. Similarly the first two 
terms in (6.7) may be written 

Tr &s,~&k,~ - Tr SXj.nSxk,,~ (6.14) 

F r o m  (6.3), (6.5), (6.7), (6.13), and (6.14) we obtain for the regularized second 
partial o f  W 

~-~qj--~q~j~ - T r  U~Xj,,~USxk,n + Tr SX;,,~Sxk.,~ - dx dy b(x - y) 
t k 

= f f  trt-(usx,. )(y, x)USx .=(x, y) 

+ (Sxy.,)(y, x)(Sxk.~)(x,y)] -- ( ( d xdyb (x  - y)  (6.15) 
~ A  j #Ak 

We are justified in writing the trace as an integral over the diagonal of  the 
kernel, since a product  o f  two HS operators is involved (see Ref. 35, p. 522). 

Now, since KRgR = K~, (1 -- G G ) - l g .  -- G(1 - KR)-*; hence 

g _= u S  = (1 - g~K~)-~g.& 

= ~R(1 - KR)-~SR 

= ~R[1 - (1 - Somxn,)-~Soqo~XA]-~(1 - Sornxv~)-~So 

= gR(1 - Soh)-~So (6.16) 

where h = mxD~ + r 

Lemma 6.4.  S(x , y )  - S ( x , y )  = O(lnlx - y ] -~ )  as x - + y .  

Remark. We mean that each matrix element of  S - S is O(ln]x - y]  -~). 
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Proof. As in the proof of Lemma 5.5, 

(_~7 + m)(S - S)  = ( - ~ R ) S  + ~R(m - h)S 

so that 

- S = S(-r  + S~a(m - h),S 

The lemma then follows from the known singular behavior 

S(x ,y)  = O([x - y[-1), S(x ,y)  = O(]x - y ] - l )  (6.17) 

see Lemma 3.4) and Lemma C6. �9 

We write the first term in (6.15) as 

~ f dx dy tr[(S - S)x~*h,(y, x)Sx~*h,(x, y) 
t, l o /  

JV" 

+ ~qx,*h,(y, x)(S - S)x~*h,~(x, y)] (6.18) 

where the integration in (6.18) extends over a bounded neighborhood ~ of 
A~ • Ak (due to the smearing by h,). By (6.17), SX~ and Sxj~LP(./V ") for 
p < 2 and (S - S)Xj and (S - S)xk ~ L q ( ~ )  for q < ~ .  By Lemma 6.3(a) 
the convolutions with respect to hn converge appropriately in L;  and L ~ as 
n---> ~ ,  and so by H61der's inequality, (6.18) converges to 

~ (  dx dy tr[(S - ~q)xJ(Y, x)Sx~(x, y) + SXj(Y, x)(S - ~q)x~(x, y)] 
J J  

(6.19) 

Now assume t h a t j  # k. Then it is not hard to show that 

1 
J dxdy Ix - y l  2 < oo 

Therefore it makes sense to separate S and S in (6.19) to obtain 

- f  ~ dx dy tr ~(y, x)S(x, y ) +  ( f dx dy tr S(y, x)S(x, y) 
JA ] dA~ ~Ai "2A 

(6.20) 

Actually, since ~XJ = XJ, we can drop the ~R in (6.16) and replace o 0 by 
S'  - (1 - Soh)-lSo. Moreover, from (6.8) when j  # k, 

fz~jf~ b ( x - y ) = f A j f ~  t rS (y , x )S (x , y )  

which cancels the second term in (6.20). 
Collecting the above arguments, we find that we have justified the formal 

calculation in the introduction: 
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Theorem 6.5. Forj  -r k 

02W/aq, aq~ = - f  f dx dy tr S'(y, x)S'(x, y) (6.21) 
J =5 ,f ~ A k  

where S '  = [1 - So(m;xD, + r 
But the results of Section 3 apply to S', Appealing to Theorem 3.3, we 

conclude that: 

Corollary 6.6. F o r j  # k, OaW/~qj ~q~ > O. 
In the notation of this section, the definition (1.27) reads 

1 x )  
P~ f x) + 

Thus, log P0,~ = W - log f p(/~, K) d#, and so (1.28) immediately follows. 

7. CASE OF ZERO FERMI M A S S  

In this section we show that the results of the previous sections for 
rn~ > 0 extend to the case rn~ = 0. The basic Hilbert space is J~o = 
L2(Ipld2p) | C2; the Fermi two-point function is 

l f p e~p.(x_y ) 1 f t . (x-y)  
S o ( x , y )  = ~ -~ dP = 2~ Ix - y l  ~ 

where the matrices/3 are given by (I. l 3); and 

K'  =- S0r (7.1) 

where we write K'  instead of K since we intend to invoke Theorem 2.2. 
It does not make sense to choose 

:Tr K " K ' :  = (2~)~ f ~2 fA :r dx 

as the mass counterterm, since the infrared divergence of the infinite constant 

f (dp/p 2) does not cancel against anything. Accordingly we introduce 

K = x1SoCxA (7.2) 

where Xl is multiplication in momentum space by XI(P), the characteristic 
function of the set {p[ ]Pl >t 1}; and we choose as the counterterm 

:Tr K 'K:  = (@~)~fj~,zl ~ A  :r 

In other words, we define B(K', K) and the renormalized determinant 
p(K', K) as in (2,30). 
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We first establish that p(K', K)e  LO(dtz) by checking that K, K', and 
V -  K' - K satisfy the hypotheses (a)-(d) of Theorem 2.2 for the (non- 
cutoff) boson field r The calculations closely follow those of the massive 
case except that we must exercise care over the small-momentum behavior 
(an occasional harmless logarithmic divergence occurs) and we have to fuss a 
little over momentum space cancellations since the counterterm is not 
"exact." Of course, in expressions involving K only there is no problem with 
small momentum. 

(a) We must first show that [ID-2~KH2.2, IID~KH4.4, and /IB(K)itL2 are 
finite for some e > 0. We take e < 1/4. Now, as in the proof of Lemma 4.6, 

- 2 r  2 HD KI]2.~ = dffTr D-ICxASo*x~DI-4~SoCxA 

= const dp dq IP + q] Iql ~+~ dk ,(k) ~ 

By Lemma C5, 

f dqx~(q)lp + ql-*lql -~-~ = O(]pI -~') 

(7.3) 

and by Lemma C2, 

f dk ]~(A(p+k)]2~(k) - 2 =  0[~=~ ~ (1 +,p~,) -~ log(2+ 'P~')I 

Hence 

f llD-2~t;i]2 2,2  ~< coast dplpl 4~]--[ (1 + [p~l)-llog(2 + Ip~l) < 
/ , =0  

Indeed, this bound is even more transparent in configuration space, and the 
bound IID~KII~.4 < m can be obtained easily in this way. 

As for B, 

where [see (2.26)] 

f [x~(;) (p + k).p~ b(k) \ p2 - x~(p)x~(p + k)(p + k)2p2] dp 

= x1(p) p2 (p + k)2p~! dp 

(p + k).p 
+ Xl(P)[1 - Xl(P + k)] (p + k)2p 2 dp (7.4) 
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The first integral in (7.4) may be estimated exactly as in the massive case and 
is O[ln(2 + Ikl)], whereas the second integral is Oil(k)-1]. We conclude that 

b(k) = O[ln(2 + Ik])] (7.5) 

and the argument continues as in the massive case. 
As for hypothesis (iii) of Theorem 2.1, 

2Tr(K z + K'K)  = constfA fz, dxdyw(x - y)d~(x)~(y) Tr(K + K*) 2 

where [see (2.26)] 

�9 (k) = dp IPl IP + kl xl(P) f ( p  + k)2 xl(P + k)x~(p) 

We claim that ~(k) = O(1) as in the massive case. To see this, we write, as in 
(7.4), 

f [ 1 p . ( p + k ) ]  ~(k) = xl(P) [P] IP + kl p2(p + ~2 dp 

k)] p (p + k) 
+ f x~(p)[1 - xl(P + p2~- T- ~)~ @ 

The second integral is O[~(k)-~], and the first, by scaling, is (/~ = k/[kt) 

1 p.(p + k)]  
Xl(]k]p) dp 

J Ipl ]p + kl p2(p ~_ ~2] 

f [ 1 p . (p  + k)]  ~< const + i ~  Ipl ]p + kl p2(p + ~2j dp (7.6) 

It is not hard to check that the integrand in (7.6) is O([p]-3) and so ~(k) = 
O(1). Using the ultraviolet cutoff we introduced in Section 4, we obtain 

f d~ Tr(Kj + Kj*) ~ ~< cj as in Lemma 4.10. 
(b) We employ the same decomposition of K as in the massive case: 

K = L +  H, where 

L = x2SoCXA and H = OoSoCxA 

with X2 the characteristic function of {kll ~< [k I ~< a) and 0~ that of 
{k] [k I /> a}. Then the kernel wz of (2.27b) is given by [see (2.26)] ] 

~'z(k) = X~(P)-~ - O~(p + k)l p + kl-1]p] -1 dp 

2 t XI(P) - 10~(p + k) 
+ ~ J  [Pl [p + k] dp 
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The second integral is O(a-1) and we estimate the first as in (2.29) by 

Xl(P) O~(p + k) 1 (Xl(P) Oo(p + k)~ 
I p t I p + k l ~ ~ C-f i  - + -G -+- -k ~ ! 

to obtain 

1 ! _ (  d_p 1 
~H(k) /> (2rr)3jl ~,~o p2 + O(a-1) = ~ log a + O(a -1) 

The usual bound ~H(k) = O[ln(2 + Ikl)] leads to (2.31). 
It remains to verify that L satisfies (2.27a). Now if ~ ~ Co~~ satisfies ~ = 1 

on A, we can write 

L = x~So~(p 2 + 1).T 

where T = (p2 + 1)-lq~XA. By the unitary equivalence of 3fo with L 2 | C 2, 
effected by multiplication in momentum space by Ip] l/s, we have 

I2  Hx2So~(p 2 + 1)~l~e0) 

constff l lpl~,~x2Cp)SoCp)r q)Cq2 + 1)]q]-l,~]~ dp dq < oo 

Likewise, by Lemma C3, 

[[T~,2 = constfff [p](p2 + 1)-2 
12A(p - q - k )  l 2 

/~(k)2 Iq1-1 dp dq dk < oo 

so that by H61der's inequality L satisfies (2.27a). 
(c) Looking back at (7.3), we observe that IlD-2~K'[[2.2 is finite, i.e., 

there is no need for the cutoff Xl. For our choice of ultraviolet cutoff we see 
that there is no significant change in the proof  of Lemma 4.6, so we have the 
desired bound on IID-2e~K/[[2.2. The bound on HD~K/I I~ ,~  is obtained by 
the same trick that was employed in Section 4. 

From the definition (2.30), 

~B, = constf~ f~ b'(x-y):c~(x)3(o,(y): 

where, as in (7.4), 

f [Xl(P) (p + k) .p]  D'(k) = _ [ p2 (p + k)2p2j dp 

f [ l  ( p + k ) . p ]  f (p+~).p. = xl(p) -~ (p + k)~p~l dp - (p + ~1 k - ~  2ap 

= O[ln(2 + ]kl)] + O[ln(2 + Ikl-~)] 

The additional logarithmic singularity at k = 0 does not change the bound on 
]13Bjllr~ from the massive case. 
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(d) We calculate as in (7.3) that 

f f 1 -  x l ( q ) ~ ' 2 a ( p + k ) l  2 [ID2~V[I~.2 = c o n s t  dp dq IP + q[ [--~-4~3 dk ~(k) 2 

Since 

dq IP + ql-~lql 4~-1  = o [ ~ ( p ) - q  
q[~l  

2e g 2 it follows that II D I12.2 < ~ .  Similarly, if ~ < �88 we find that II VD2~I]2 2,2 

< 00. 

In summary, we have verified the hypotheses of Theorem 2.2 for any 
choice of ~ in (0, �88 Hence" 

T h e o r e m  7.1. Suppose m/ = 0. Then p(K', K), defined by (2.30), (7.1), 
and (7.2), is in Lv(dtz) for any p < ~ .  

The lattice approximation follows at once since in the course of proving 
the above theorem we have established the same bounds on the "Fermi parts" 
of the momentum integrals that were used in Section 4. Consequently we 
have the FKG inequality (we are obviously spared the labors of Section 5): 

T h e o r e m  7.2. The F K G  inequality of Theorem 6.8 extends to the case 
m s = 0 .  

8. FKG I N E Q U A L I T Y  FOR P S E U D O S C A L A R  Y2? 

How does the analysis of the preceding sections for scalar Y2 change in 
the case ofpseudoscalar Y2 ? The presence of the factor P = [o -g] in S [see 
(1.12)] does not affect any of the estimates. However, in the complex variables 
formulation, I" ~ i, and so there are some changes: In the notation of Section 
3 we find that relation (3.5) for S'  = (1 - Soh)-lSo is replaced by 

[Re X~(z, t) Re X2(z, t)] (8.1) 
S'(x, y) = - I m  X~(z, t) Im X2(z, t) 

where X1 and X2 are the fundamental generalized analytic functions for Eq. 
(3.8), i.e., solutions of (3.6a) with c = 1 and c = - i ;  but now 

h(z) = - i}a(z)xa(z) - m,xo~(Z) (8.2) 

is no longer real as in (3.1b). As a result, (3.8) is no longer self-adjoint in the 
sense that (3.10') and (3.10) agree. The adjoint fundamental solutions now 
satisfy 

X/(z, t; ~o, rnl) = X/z ,  t; - ~ ,  mr) (8.3) 

where we indicate the dependence on the "parameters"  ~ and rn~. From 
(3.6a) we also have the obvious symmetry 

Xl(z, t; (~6, ml) = iXz(z, t; -~o,  -mr)  (8.4) 



184 Guy A. Battle and Lon Rosen 

(3.11), (8.3), and (8.4) together  yield, instead of  (3.12), 

Xl(z, t) = I m  )(2-(t ,  z) - i I m  .g l - ( t ,  z) (8.5) 

X2(z, t) = - R e  X2-(t, z) + i Re Xl-( t ,  z) 

where the superscript  minus sign denotes a reversal in the sign of  ml,  i.e., 
x j - ( t ,  z) = xj(t, z; ~ ,  - m 3 .  

F r o m  (8.1) we calculate that  

tr S'(x, y)S '(y ,  x) 

= Re Xl(z, t) Re Xl(t, z) + Re X2(z, t) I m  Xl(t, z) 

+ I m  Xz(z, t) Re X2(t, z) + I m  X2(z, t) I m  X2(t, z) 

Substi tuting f rom (8.5) for Xj(z, t), we arrange tha t  all the a rguments  are in 
the order  (t, z): 

tr S'(x, y)S '(y ,  x) 

= I m  X2- Re )(1 - Re  X2-  I m  X1 - I m  X1- Re X2 + Re )(1- I m  X2 

= I m ( - ~ X 2 -  + X1-X2) 

As is painfully obvious,  L e m m a  3.8 applies only in the case mr = 0 and we 
conclude that :  

k e m m a  8.1. Consider  the lattice cutoff  pseudoscalar  Y2 model  with 
mf = 0  and define So by (1.12) with m = 0  and F =  [o -~]. Then  S ' =  
( 1  - So(~Xa)-iSo is a bounded  opera to r  on ~ o  and satisfies 

tr S'(x, y)S '(y ,  x) < 0 

There  is an al ternate way of  deducing this result, which is wor th  ment ion-  
ing. Consider  the scalar two-point  function defined by (3. la) with m = 0: 

Ss' = (1 - So,s~oXA)-~So.~ (8.6) 

where  we at tach the subscript  s o r p  to denote  scalar or pseudoscalar.  N o w  let 
F = [o -~]. I t  is easy to see tha t  e ~ = cos 0 + P sin 0. Take  0 = rr/4. Then,  
since r an t icommutes  with fij o f  (1.13), we find that  

e-OVfijeOV = 1(I  - P)fis(1 + F) = flip 

Hence  So.T = e-~ ~ and f rom (8.6) we have 

S T' = e-~ ~ (8.7) 

L e m m a  8.1 is an obvious consequence of  (8.7). I t  is not  possible to obtain a 
relation like (8.7) when ml > 0 and S T' = [1 - SO.T((~XA -- mrF)]-~So. , -  

U p o n  removing  the lattice cutoff  as in Section 7, we complete  the p r o o f  
of  T h e o r e m  1.2 with the above lemma.  
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We do not  know whether the basic inequality (1.19) holds for pseudo- 
scalar Y2 with m r > O. We can prove it for pseudoscalar Y1; moreover,  the 
few examples in higher dimensions for which we can compute  explicitly have 
engendered in us a sense o f  cautious optimism. One such example is the case 
where CX, is a constant  c on alI o f  R a (d arbitrary). In this case the ]?j are 
N x N matrices, N = 2 ~d/21, satisfying 

and P satisfies 

3~3j + 3j5~ = 28~,i 

/3,I7 + P3~ = O, 

S is defined by (1.12) and 

y2 = _ I (8.8b) 

s '  = (1 - c S ) - l s  = ( - 3 a  + m - c r ) - ~ p  

= (fia + rn + c P ) ( - k  + m 2 + c2)-1F 

by (8.8). Hence 

T - tr S'(x,  y )S ' (y ,  x)  

1 ( ei(;_q), a tr(p 
- (27r) e 3 dap daq 

+ rn + cP)P(q + m + cF)P 
(p= + M2)(q 2 + M 2) 

where z = x - y and M 2 = m 2 + c 2. I t  follows f rom (8.8) that  

C2 m 2 
T - (2~a  dp dq e ~(~+q>~ - + P'q (8.9) (p2 + M2)(q2 + M 2) 

k e m m a  8.2.  For  all z, c, and m with M r 0, z 4= 0 we have T <  0. 

Proof. Write z = (z0, z), where z ~ R e-1. By rotational symmetry we 
may suppose that  z = 0 and Zo > 0. We evaluate the P0 and q0 integrals in 
(8.9) by residue calculus. The integrand has poles in the upper half-plane at 

Po = /if(P) --- i(p2 + M2)1/2 and at qo = /if(q). Hence 

f c2 _ rn 2 _ ff(p)ff(q) + p . q  
T = (2rr) 2-a dpdqexp{-zo[f f(p)  + if(q)]} 4ff(p)ff(q) 

By the Cauchy-Schwarz  inequality 

f f (p ) f f (q )  /> M 2 + p . q  /> c 2 _ rn 2 + p . q  

and s o T <  0. �9 

The analogous result holds for scalar Y2 with d arbitrary. This is our 
evidence, referred to in Section 1, that  the inequality (1.19) may hold in 
higher dimensions. 
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A P P E N D I X  A. E Q U I V A L E N C E  OF FKG H Y P O T H E S E S  

The following "wel l -known ''(18'19~ lemma shows that  the conditions 
(1.5) and (1.7) are essentially equivalent. 

L e m m a  A1. Let dv = e w d"q be a probabili ty measure on R~ with 
w ~ C2(R~). Then the condit ion 

02w/~qj Oqk ) O, j # k (A1) 

holds if and only if p = e w satisfies the condit ion 

p(P v q)p(p /x q) ) p(p)p(q) (A2) 

where (p v q)~ = max(p~, q0 and (p /x q)~ = min(p~, q0. 

Proof .  Suppose that  p~ ~<q~ for i =  1 ,2 , . . . , r  and that  p ~ ) q ~  for 
i = r + 1 ..... n, where 1 ~ r ~< n - 1. Then (A2) is equivalent to 

w(ql , . . . ,  qr, Pr +1 .... , Pn) -- w(q)] 

+ [w(pl ..... Pr, qr+l ..... q~) -- w(p)] >/ 0 

which is equivalent to 

fo dt (pj  - qj) 
j = r + l  

~w 
x ~qj (q l  .... ,q~, tp~+l + (1 - t)q~+l ..... tp,  + (1 - t)q~) 

fo 1 2 ~j~w - dt (PJ - qJ)-~A-~ (Pl ..... p~, tpr+l + (1 - t)q~+l,.. .) >1 0 
j = r + l  

which is equivalent to 

ds dt (q~ - p~)(pj - qj) 
~.=1 j = r + l  

~,2w 
x ~ ( s q l  + (1 - s)p~, . . . ,  tp ,  + (1 - t ) p , )  >1 0 

Note  that  in the double sum (q, - p~)(pj - qj) >>. O. We obviously obtain a 
similar conclusion whatever the ordering relations are for the p, and q~ and so 
we  obtain the stated equivalence of  (A1) and (A2). �9 

Thus our version of  the F K G  inequality, Theorem 1.1, is weaker than the 
version in Ref. 20 in that  we assume that  the density p is strictly positive and 
C 2. For  applications the hypothesis (A1) is particularly convenient;  but  the 
requirement  that  p be strictly positive can be a nuisance and may necessitate 
procedures such as that of  Section 5. I t  is fallacious to believe that  the vanish- 



The FKG Inequality for the Yukawa2 Quantum Field Theory 187 

ing ofp  is a minor problem. In this connection we recommend an example of a 
non-strictly positive p given by Kemperman (Ref. 36, p. 329) in his exhaustive 
analysis of F K G  and Holley-Preston (2~ inequalities. In his example, p 
satisfies (1.7) pairwise, i.e., for any i and j, (1.7) holds provided Pk = qk for all 
k r i,j, but (1.6) fails [and hence so must (1.7) in general]. 

APPENDIX  B. POINTWISE CONVERGENCE OF SR' 

Here we prove Theorem 5.1 concerning the point~'ise convergence of 
S~'(x, y) to S'(x, y). The two-point functions SR and SR' with spatially cutoff 
mass are defined in (5.2) and the non-cutoff functions S and S' are defined in 
(1.12) and (5.1). 

We introduce the Banach algebra N of measurable, (2 x 2)-matrix- 
valued functions T on R 2 x R~ such that 

f. 

]]T]] ~ ess-sup) dy IT(x, Y)] < ov 

where ]T] denotes the HS norm on 2 x 2 matrices. Multiplication in ~ is 
defined by 

(rU)(x, y) - f dx r(x, z)U(z, y) 

We let N" be the Banach algebra with identity that is obtained by adjoining 
the 3-function to ~2 in the canonical way. 

L e m m a  B1. L e t f b e  a bounded, measurable function on R2 with com- 
pact support. Then SR(x, y)f(y) --+ S(x, y) f(y)  in ~ as R ~ oo. 

This lemma follows easily from the series calculation (5.14) for SR. We 
omit the details. Note that S f a n d  SRfhave integrable singularities at x = y 
and hence are in N'. 

Lemma B2. Suppose that A~-+ A in N" and that (1 - A)- 1 exists in 
N'. Then (1 - An) -1 exists for sufficiently large n and converges to (1 - A) -~ 
in ~ '  as n -+ oe. 

This elementary lemma holds in any abstract Banach algebra with 
identity as a consequence of the Neumann expansion 

(1 - A . )  - 1  = (1 - A )  - ~  ~ [ ( A .  - A ) ( 1  - A ) - Z l  j 
j = o  

k e m m a  B3. Let  f be a bounded, measurable function with compact 
support. I f  (1 - Sf) -1 is a bounded operator on W -- ~'m, then its kernel 
lies in ~ '  and is the inverse of the kernel of 1 - Sf in  ~'. 
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ProoL We write, as an operator identity, 

5 5 

(1 - s f )  -~ = y ,  ( s f )~  + (1 - s f ) - ~ ( s f )  ~ = ~ (s f )~  + ( S f ) L ( S f )  
j=o j=o (B1) 

whereL  = (1 - Sf)-~(Sf) ~. It  is easy to verify that the first term in (B1) is in 
M'. As for the second term, L ~ Tz on ~r since Sf~ ~ on ~ (as can be seen 
by computing the appropriate trace in configuration space). Thus the standard 
decomposition, L = ~ c~.(f~, . )gg~,  involves a summable sequence {%} with 
Ilf,]]~ = [[g~l]~ = 1. Now 

so that 

(SfLSf)(x, y) = ~ en(Sfg.)(x)f(y)(S*Df~)(y) 
n 

]]SfLSf[] <~ ~ [~.l ]]Sfg.H ~ [[f]]z]]S+Df.H2 (B2) 
r~ 

Clearly ]]S*Ofnll2 < [Ff~I]2 < const ]lA[l~, and 

[ISfgdo~ < [ISfO-1/=l]~,o~l]gd~ 

where ][. ]]2,| denotes the operator norm from L 2 to L ~. By the Schwarz 
inequality, 

HSf D ]ls.~ ~< sup dz S(x, z)f(z)D-i/2(z - y) (B3) 
x J 

We bound (B3) using Lemma C6 and the explicit small-distance behavior: 
S(x,z)  ~ I x - z ]  -1 and D-I /2 ( z -  y ) ~  [ z -  yl-3/L Hence, by (B2), 
(SfLSf)(x, y) ~ ~, and so, by (B1), (1 - Sf)-l(x, y) ~ ~'. 

That  (1 - Sf)-~(x, y) is the inverse of(1 - Sf)(x, y) in ~ '  follows from 
the obvious fact that the kernel of  a product of  bounded operators in 
whose kernels lie in ~ '  is given by the product in ~ '  of  the kernels. �9 

Proof of Theorem 5. I. By (5.2c), Sn' = (1 - S J ) -  zSR, w h e r e f  = r 
is a bounded, measurable function with compact support. By Lemma B3, 
(1 - Sf ) -~(x ,y )~M ', and by Lemmas B1 and B2, (1 - Sff)-~(x,y)--+ 
( 1 -  Sf)-~(x,y) in M'. Now let heC0~(E2) .  Then by Lemma B1, 
SR(x, y)h(y) --~ S(x, y)h(y) in ~ .  I t  follows that the kernel of (1 - SRf) - zSRh 
converges to the kernel of  (1 - Sf)-zSh in ~ as R --> ~ .  Thus 

lira sup)" dy [Sd(x, y )  - S ' ( x ,  y)[ Ih(y)l = 0 

and the theorem follows since h is arbitrary. �9 
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A P P E N D I X  C. S O M E  S T A N D A R D  E S T I M A T E S  

Here we collect and prove various estimates used in the main text. We 
shall denote all universal constants by the same letter c. The first estimates 
concern the function of  k e R, 

f (k )  = dp (1 + [p])-~(1 + IP + kl) -~ (C1) 
ctz 

I . e m m a  C ] .  F o r  a > 1 a n d  0 ~< �9 ~< a, 

f (k )  <. c(1 + ]k[) -~ 

Proof. We divide the integration in (C1) into the two regions, [Pl > Ikl/2 
and ]Pl ~< ]k]/2. In  the first region we may extract the factor (1 + Ik{) -~ 
f rom the factor (1 + ]pl)-~; in the second region we use 

(1 + [p + k l ) - "  ~< (1 + [k[/2)- ' (1 + [pl) -=+~ [ ]  

k e r n r n a  C2. For  0 ~< e, e ~< 1 with ~ + e > 1, 

fc(1 + [k]) 1 - ~ - '  if ~, e < 1 

f (k )  <~ ~c(1 + lkl) 1 . . . .  log(2 + Ikl) if ~ = 1 o r ,  = 1 

ProoL f (k )  is obviously bounded  uniformly on the interval ]k I ~< 1. 
N o w  assume that ]k[ > 1 and set A = Ikl, k = A-lk,  p = Aq: 

f (k )  = A ~-~-~ dq (A -1 + Iq])-~(A -1 + ]q + Fcl) -= (C2) 

I f%  ~ < 1, t h e n f  ~ Al-~-~fdq  Iql-~lq + ~]-= = O(A 1 . . . .  ). I f  either ~ = 1 

or  �9 -- 1, it is easy to see that  the integral in (C2) diverges logarithmically in Z 
as ,~-+oe. [ ]  

Next  we consider the function on [R 2 

j~ g(k, k') = dp (1 + [p])~(1 + IP + kl)-~( 1 + l p +  k'i)  -z (C3) 
co 

L e m m a  C 3 .  F o r 0  ~< %/3, �9  ~< 1 w i t h a  + / 3 -  �9 > 1, 

~c(1 + Ikl + lk'l)~(1 + Ik' - kl) ~-=-~ if a,/3 < 1 
/ 

g(k, k') <~ ~c(1 + Ikt + Ik'l) '(1 + [k' kt) 1-~-~ log(2 + Ik' - kl) 
/ 

1. if  a =  l o r f i =  1 

Proof. We make the change of  variable p --+ p - k '  in (C3) and assume 
without  loss o f  generality that  tk'l <~ Ikl. Breaking up the integration into the 
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regions ]p[ ~< ]k[ and lpl > Ikl, we obtain 

g(k, k') = [ dp (1 + IP - K'IY(1 + I p l ) - f f l  + IP + k - k ' l)  -= 

[ dp (1 + Ikl + ]k'ly(1 + Ip[)-~(1 + IP + k - k ' l)  -~ 
JI pl ~ Ikl 

+ c [  dp (1 + [ply-B(1 + [p + k - k ' l )  -~ 
a l  ~[ > [kl 

since when [Pl > [k[ we have ] p -  k '  I ~< 2]p I. Applying the preceding 
l emma  to the remaining integrals, we obtain  the desired conclusion. �9 

In the course of  proving Lemmas  4.4 and 4.9 we appealed  to the following 
l emma  with b = 27r: 

L e m m a  C4. Take  b > 0 and 0 ~< ~,fi, v ~< 1 with a + f i  + v > 2. 
Then  

f] lim dk dk' (1 + [k])-~(1 + [k ' ] ) - ' (1  + ]k' - k + b/a[) -v = 0 
6 ~ O  J _  oo oo 

Proof. We apply L e m m a  C2 to integrate out  k '  and bound  the double 
integral by 

cf  dk (1 + Ikl)-~(1 - I k -  b/31)-x (C4) 

where ,~ < v + /3 - 1. By assumpt ion  we may  choose ~ > 1 - ~ ~> 0. Once 
again by L e m m a  C2, (C4) is bounded  by (1 + [bl/a) -~, where 0 < e ~< 
c~+ ~ - 1 .  �9 

The  next two lemmas  state similar est imates for  integrals on R ~. The  first 
follows by a scaling a rgument  as in the p r o o f  of  L e m m a  C2, and the second 
may  be found on p. 39 of  Ref. 25. 

Lemma 05. I f 0  ~< E < e~ < 1, then 

f d2p (1 + ~< c(1 + Ik{) ~-~ + ip l ) - l -= (1  + Ip k l ) - l+~  

I . e m m a  C6. Fo r  0 ~< c~, fi < 2 and A c ~2 bounded  

t 
c if ~ + f l < 2  

fAd2z ]z - -  X l - c q Z  - -  y]-~ <~ c log(2  + tx - y l -X)  if + /3 = 2 (Z 

[clx-Yl2-~-B if  ~ + f i  > 2 

Our  final est imate concerns the Sobolev spaces ~ defined in (1.10): 

k e m m a  C7. Let  ~ a Co~176 2) and let m > 0. T h e n f ~ +  ~f i s  a bounded  
mapp ing  f rom ~o  to ~,o. 
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ProoL Let 1 [ denote the usual Pythagorean norm on two-component 
vectors. We need to show that 

.f dp (p2 + m2)l~'f(p)[2 <~ c f dp IP] if(p)[2 (C5) 

Now 
(p2 + m2)li,[~f(p)[ 

= .f (p2 + m2)l/4[~(p _ k)] I/(k) l dk 

~< f [[p - ktZ/21~(p - k)[ I f (k ) l  + I~(P - k)[ [k[1,'21f(lc) [ 

+ ml/2l~(P - k)l If(k)[] dk 
so that the left side of (C5) is bounded by 

[; ( , ,-  + 

By Young's inequality the second term in (C6) is smaller than 2[]~][~ 2 x 
[1 [kI~12]f(k)] []2 2, as required. The first term in (C6) may be written as 
[]h *f[[2 2, where h(p) = ([pl z/2 + mZ/2)~(p). We let f =  f1 + f2, where 

f~ = xzf, with XI(P) the characteristic function of {]p[ ~< 1}. Then If2(p)t <~ 
]p[~J2[f(p)], so that 

[Ih *fl12 ~ IIh *AI[2 + llh*~ll~ 

as required. [ ]  

II/ll211f~lll + IINIIIIlLII2 (Young's inequality) 

~< HNII2 IIxllpl-l'2lI 2 I] [pl~/2lf(p)l II2 + ]]hH~ 1[ ]pl~2lf(p)l II~ 
= ell Ipll'~lf(p)1112, 
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